
XPoint Cache: Scaling Existing Bus-Based Coherence
Protocols for 2D and 3D Many-Core Systems

Ronald G. Dreslinski, Thomas Manville, Korey Sewell, Reetuparna Das, Nathaniel Pinckney,
Sudhir Satpathy, David Blaauw, Dennis Sylvester, Trevor Mudge

.
Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor – Ann Arbor, MI, 48109

ABSTRACT
With multi-core processors now mainstream, the shift to many-core
processors poses a new set of design challenges. In particular, the
scalability of coherence protocols remains a significant challenge.
While complex Network-on-Chip interconnect fabrics have been
proposed and in some cases implemented, most of industry has
slowly evolved existing coherence solutions to meet the needs of
a growing number of cores. Industries’ slow adoption of Network-
on-Chip designs is in large part due to the significant effort needed
to design and verify the system. However, simply scaling bus-based
coherence is not straightforward either because of increased con-
tention and latency on the bus for large core counts.

This paper proposes a new architecture, XPoint, which does not
need to modify existing bus-based snooping coherence protocols to
scale to 64 core systems. XPoint employs interleaved cache struc-
tures with detailed floorplaning and system analysis to reduce con-
tention at high core counts. Results show that the XPoint system
achieves, on average, a 28× and 35× speedup over a single core
design on the Splash2 benchmarks for a 32 and 64 core system re-
spectively (a 1.6× improvement over a 64 core conventional bus).
XPoint is also evaluated as a 3D stacked system to reduce further
bus latency. Results show a 29× and 45× speedup for 32 and 64 core
systems respectively (a 2.1× improvement over a 64 core conven-
tional bus and within 8% of the speedup of a 64 core system with
an ideal interconnect). Measurements also show that the XPoint
system decreases bus contention of a 64 core system to only 13%
higher than that of an 8-core design (a 29× improvement over a 64
core conventional bus).

Categories and Subject Descriptors
B.0 [Hardware]: General; C.0 [Computer Systems Organiza-
tion]: General

Keywords
3D Integration, Bus Design, Cache Coherence, Interconnect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

1. INTRODUCTION
Shared memory multi-core processors have become mainstream.

As core counts in these systems continue to rise, it becomes impor-
tant to support scalable cache coherence protocols. While complex
systems have been proposed for directory based Network-on-Chip
(NoC) interconnects, they have only been adopted in a limited num-
ber of commercial systems [3]. Meanwhile, many manufacturers
continue to run on evolved versions of older snooping based de-
signs, such as the rings in the IBM Power 4/5 series [41] and the
Intel Sandybridge [36]. Other systems have taken small steps away
from snooping protocols by adopting crossbars to interconnect the
chip such as Sun’s Niagara 2 [26] and IBM’s BlueGene/Q [24].

The reluctance of industry to move to NoC designs is in part
driven by the difficulty of system verification. There is a signifi-
cant infrastructure [31] around existing coherence solutions, which
makes validating evolutionary coherence solutions much less costly
in both engineering effort and time to market. Thus, an interconnect
that scales to many-core systems without modifying the underlying
coherence protocol is desirable.

In this paper, we propose a new interconnect architecture, XPoint,
which employs address-interleaved cache architectures to scale un-
modified snooping coherence protocol designs to many-core sys-
tems as large as 64 cores. Address interleaving of the memory
system, coupled with the aid of point-to-point interconnects and
optimized layout designs, helps to reduce the contention for shared
resources in the system while leaving the coherence protocol un-
modified. Detailed floorplaning and analysis is done in a 32nm
technology which shows that the design can easily scale to 64 cores
in a conventional 2D layout—XPoint 2D. A 32 core XPoint 2D sys-
tem only increases the bus contention by 9% on average when com-
pared to an 8 core design, and has 10× less bus contention than a 32
core system with a conventional design. A 32 and 64 core XPoint
2D system achieves, on average, a 28× and 35× speedup over a sin-
gle core, which is a 1.6× improvement over a 64 core conventional
design.

While the XPoint 2D system itself scales to 64 cores, at the
higher core counts (32-64) there is still room for improvement.
The bus delay of the system at this point is much larger than the
8 core system, and leads to increased bus contention and longer L1
miss latencies. We show that the XPoint design extends naturally
to 3-dimensions (3D). While 3D integration is itself a speculative
technology, recent designs [17, 29] have supported the feasibility
of such systems with fabricated test chips. The work by Fick et
al. [17] demonstrates a 7-layer, 3D-stacked system with 128 ARM
cores on 4 layers of CMOS logic and 256MB of DRAM on the re-
maining 3 layers. With optimized floorplans the XPoint 3D system
can reduce the bus delay of a 64 core XPoint 2D system to that of

a 16 core system. This reduction in bus delay shows that an XPoint
3D system with 64 cores only increases bus contention by 13% on
average over an 8 core system and has 29× less contention than a
64 core conventional design. The XPoint 3D also improves the av-
erage speedup of the system to 29× and 45× for a 32 and 64 core
system, which is a 2.1× improvement over a 64 core conventional
design and is within 8% of the speedup of an ideal interconnect.

An important concern for 3D stacked systems is cooling. Ther-
mal analysis shows it is possible to stack 4 layers of XPoint 2D
systems in a single chip that can be cooled by conventional means.

The main contributions of this paper are:
• An architecture that uses snooping buses with unmodified co-

herence protocols coupled with address-interleaved caches and
point-to-point links to reduce shared bus contention in on-die
many-core chips

• Detailed floorplaning and spice analysis of the buses and other
key components in 32nm

• An extension of the design in a proven 3D technology, includ-
ing thermal analysis, that reduces the latency of shared buses

• Detailed analysis of the performance of this design from 8 to
64 cores, showing the system readily scales to 64 cores in both
2D and 3D implementations

The rest of the paper is organized as follows: In Section 2 we will
motivate the advantage of simply extending existing snooping pro-
tocols and illustrates the key barriers. Section 3 will present the
XPoint Cache architecture. Experimental methodology is presented
in Section 4 and the results in Section 5. A brief summary of re-
lated work is presented in Section 6. Finally we provide concluding
remarks in Section 7.

2. MOTIVATION
Broadcast-based snooping protocols are a common approach to

building multicore processors [8]. In the past, there has been con-
siderable effort to retain and scale snooping protocols by adapt-
ing them for split transaction buses [18], hierarchical buses [40],
and address broadcast trees [11] that provide a “logical bus” order-
ing. Existing products, like the IBM Power4/5 and the Intel Sandy-
bridge, retain and scale snooping coherence protocols for ring in-
terconnects [36, 41].

Figure 1: State transition diagram for the MESTI coherence
protocol [32] including spit-transactions and race conditions
(Containing 47-states). Industry protocols similar to this have
an extensive infrastructure to verify state interaction.

While more advanced approaches have been discussed in litera-
ture, industry designers have been more comfortable evolving their
existing snooping-based system over the years. One of the reasons

such effort has been devoted towards continuously scaling and sup-
porting snooping protocols is the prohibitive design and verification
complexity of any coherence protocol [31]. While it is possible
to formally verify relatively simple state machines at the abstract
level [14,16,19,38,39], verifying the concrete system with detailed
interactions is difficult and requires a mixture of pre-silicon [49]
and post silicon validation [9, 13, 35, 43]. Although significant ef-
forts have been devoted to the verification of protocols, coherence
bugs in commercial processors often go undetected [25]. In fact,
the need for simpler verification has even led architects to propose
coherence protocols designed explicitly for verification [50].

Figure 2: Bus Utilization for 8-64 Cores on the SPLASH2
Benchmarks. Each line represents one benchmark. The con-
ventional bus based system sees a 50-100× increase in con-
tention, while the XPoint designs limit this to much lower
amounts.

Some designs, such as the AMD Opteron [27] and IBM Blue-
Gene/Q [24], have migrated to a directory based approach for mod-
est core counts. These designs are built on top of either point-to-
point interconnects or crossbar based designs. Directory protocols
are more complex than snooping, but because the interconnects in
these systems are predictable and contain no intermediate buffer-
ing within the interconnect itself, the increased verification effort is
bounded. Meanwhile, in the research community even more com-
plex directory systems have been proposed. These systems typi-
cally employ a Network-on-Chip (NoC) approach to address the
scalability of many-core systems, however very few commercial
chips have adopted this approach [3].

Although NoC systems scale towards large core counts, tran-
sitioning to such a design represents a more radical change than
just evolving an existing snooping system with well defined design
flow and verification infrastructure. The MESTI [32] protocol for
snooping shown in Figure 1 contains 47 states, while the directory
protocol used in the gem5 simulator [6] for an NoC system requires
65 states for the L2, 15 states for the L1, 19 states for the directory,
and 3 states for the DMA engine. The product of all the potential
states that need to be verified in such systems becomes daunting,
particularly when many of these controllers are instantiated multi-
ple times in the system. Compounding this problem is the internal
buffering and routing algorithms employed in the NoC which cre-
ate unpredictable, non-uniform latencies. This, in turn, increases
the number of transient states and makes post-silicon verification
more difficult as routing algorithms and buffering solutions also
need to be verified.

The goal of this work is to extend the snooping bus based coher-
ence protocol to many core systems without modifying the under-
lying implementation of snooping protocols. However, the increas-
ing bandwidth pressure and latency on the bus as the core count
increases provide two significant hurdles to scalability. The pro-
posed XPoint design challenges the conventional wisdom that bus-
based approaches cannot scale to many-core systems [12]. While

(a) (b)

Figure 3: High level view of (a) a conventional bus based architecture, and (b) The XPoint architecture. Caches in a vertical col-
umn are all assigned to the same address range. No snooping is required between vertical columns. The vertical buses represent
independent unmodified snooping busses. The horizontal connections are made with fast point-to-point links.

the XPoint design does not scale indefinitely, detailed results show
that in a 32nm technology it can easily scale to at least 32 cores in
a conventional 2D layout and to at leaset 64 cores when 3D inte-
gration techniques are employed.

To better understand the barriers associated with scaling snoop-
ing coherence on a bus based interconnect Figure 2 shows the bus
contention rate for the SPLASH2 benchmarks at various core counts.
The methodology and configuration parameters are presented later
in Section 4. The bus contention rate, approximated by the average
L1 queueing delay, is normalized to an 8 core system. Each line
in the diagram represents one SPLASH2 benchmark. As the core
count is increased, the bus contention of traditional designs (solid
lines) grows dramatically. At a core count of 64, an 8× increase in
the number of cores, the benchmarks experience 20-100× increases
in bus contention. To extend unmodified snooping coherence a two
pronged approach will be necessary that attacks the contention on
the bus as well as the bus latency. The XPoint 2D system (short
dashed lines) employs techniques to reduce contention, as a result
32 cores only increase the contention on the bus by 1.6× in the
worst case. As the XPoint 2D system is scaled further to 64 cores,
the increased delay on the bus pushes contention higher to 8.9× that
of the baseline 8 core system. The XPoint 3D system (long dashed
lines) tackles the delay scalability of the bus using 3D integration.
At 64 cores the bus contention for XPoint 3D is, on average, only
13% higher than that of an 8-core system, even though it supports
8× the number of cores.

3. CROSSPOINT CACHE ARCHITECTURE
In the following subsections we will present architectures which

overcome the two major hurdles of scaling bus based snooping
protocols. First we tackle the bus contention with an architec-
ture called XPoint 2D. XPoint 2D uses multiple cache line inter-
leaved buses supporting unmodified coherence protocols. Results
in Section 5 will show this system scales readily to 64 cores. The
XPoint architecture naturally extends to 3D allowing further scaling
by overcoming the increasing bus latency—XPoint 3D. The section
concludes with thermal analysis of XPoint 3D and the applicability
of the XPoint to other bus-based systems.

3.1 XPoint 2D - Overcoming Bus Contention
To understand the XPoint 2D architecture a brief review of a tra-

ditional bus based system follows. Figure 3(a) shows a high level
view of a traditional bus based system. Each core is connected to
a private L1, each of the L1’s are connected to a shared snooping
bus, which in turn is connected to the L2. As the number of cores
grows, the contention on the shared bus becomes a bottleneck in
the system. The XPoint 2D architecture addresses this bottleneck
while leaving the coherence protocol unmodified.

Our baseline builds on memory interleaving techniques devel-
oped in the 1980’s to address interconnect congestion in board
level multi-processors [46]. However, integration levels and pin
constraints limited their practicality. We show that with new archi-
tectural techniques these designs are now practical for single chip
implementations, where point-to-point connections, higher cache
associativites, and a greater number of wires are available. In ad-
dition we explore the implications of such designs on coherence
mechanisms.

The XPoint 2D system exploits address-interleaving to reduce
bandwidth pressure on the shared bus fabric. Figure 3(b) shows the
logical layout of our proposed architecture. To scale the coherence
protocol to n cores, each core’s last level of private cache (L1 in
this diagram) is split into m equal slices. The core can access all
the m slices via direct point-to-point channels. By using point-to-
point connections, the speed of the interconnect can be much faster
than a traditional bus which requires bi-directional repeaters and
arbitration units. The shared L2 cache is also split into m equal
slices. A bus connects a vertical column of private cache slices
(n L1 slices) to a shared L2 cache slice, all of which map to the
same addresses. This isolates the coherence traffic separately on
each vertical bus from the other vertical buses in the system. The
result is a multi-bus system with simple, unmodified coherence that
reduces contention and increases bandwidth.

3.1.1 Architectural Impacts
The floorplan of the XPoint 2D system is shown in Figure 4.

The introduction of point-to-point links from the core to the L1
increases the access latency. By keeping the connections point-to-

Figure 4: Floorplan view of a XPoint 2D system for 8 and 16
cores.

point, rather than bus based, the system can communicate to/from
the L1 slices in one additional cycle. To help hide this new latency
a 4 cache line, fully-associative L0 buffer is inserted in the core.
The L0 and L1 are accessed in parallel, so hits in the L0 take a sin-
gle cycle, and hits in the L1 take two cycles. Coherence of the L0
is maintained by keeping a copy of the tags in the L1 slices. When
snoops occur on addresses contained in the L0 that must be inval-
idated, the L1 can signal the L0 via a point-to-point invalidation
wire. We will show with results, that the increase in L1 access time
is offset by the increased bandwidth and reduced contention of the
XPoint 2D system in Section 5.

Splitting the cache into slices has the potential to produce differ-
ent cache miss/hit behavior. For the XPoint architecture we propose
smaller associativities for slices. The lowest bits of the set index are
used to determine address mappings to the slices. In addition, be-
cause the accesses are split across the buses, prefetch mechanisms
should be located at the core/L0 to observe the entire pattern.

3.1.2 Coherence and Consistency
In Figure 3(b) each vertical bus is an unmodified snooping based

interconnect, and because each vertical bus is independent of the
other vertical buses (different address ranges), no snooping is needed
for caches in the horizontal direction. By splitting the bus into m
slices, the total bandwidth to memory is m-times larger, and the
contention on the bus is 1/mth that of a traditional design.

Although the coherence mechanism remains unmodified, there
may still be consistency issues. Coherence is an ordering of re-

quests to the same block, so splitting the bus into slices means there
is no ordering constraints between vertical buses. Consistency on
the other hand is an ordering of requests to different addresses, and
therefore requires some guarantees across vertical slices. However,
for x86 systems which support a form of processor consistency, the
consistency can be maintained by the store buffer in the core itself,
insuring that all stores are drained from the processor in program
order. More constrained consistency models will require the pro-
cessor to properly order requests to each of the slices.

3.1.3 Interleaving Mechanism
As mentioned earlier, by splitting the bus resource there is the

potential for uneven utilization of the vertical slices. For uniform-
random traffic the bus utilization is even. However, if the system
is split into four slices, a program with an access pattern where the
stride is a harmonic of 4 will access only a subset of slices creating
an uneven utilization.

To address these concerns a more complex mapping scheme can
be used to determine the slice index of the system. In the results
section we present a system with simple address interleaving on
low order bits and show that for all but 3 benchmarks utilization is
not significantly impacted. For the 3 benchmarks impacted by the
interleaving, they still outperform the baseline bus system, however
the optimal solution is a system with only 2 or 4 slices, instead
of 8. We leave more detailed analysis of other interleaving hash
functions as future work.

3.1.4 Remaining Scaling Limitations
While the XPoint 2D system addresses the increased contention

on the shared bus, it does not address the increased latency of the
bus in the system. Figure 4(b) shows the XPoint 2D architecture
scaled to 32 cores. This system still has several limits on ultimate
scalability. First, the bus length grows linearly with the number of
cores, the same obstacle faced by a traditional system. Second the
aspect ratios of the L2 cache become large, meaning that the cache
banks are spread out which increases latency and power consump-
tion.

3.2 XPoint 3D - Overcoming Bus Latency
The XPoint architecture naturally extends to 3D allowing further

scaling by overcoming the increasing bus latency of the XPoint 2D
system. The following subsections will discuss the 3D technology
used for our study and present the XPoint 3D architecture.

3.2.1 3D Integration Technology
There are many techniques for 3D integration. Simple tech-

niques such as face-to-face bonding allow simple stacks of 2 chips
while more complicated techniques that use wafer thinning allow
for larger stack systems. For our analysis we use figures from a 3D
integration technology by Tezzaron [23]. Their technique is a via-
first, back-end-of-line integration technology and has been demon-
strated in several test chips [17,29]. In the system by Fick et al. [17]
the Tezzaron technology is used to stack four layers of CMOS logic
on top of three layers of DRAM. Figure 5 (left) shows a diagram
of the system implemented by Fick et al. Figure 5 (right) shows
a cross section [29] of the through-silicon-via (TSV) technology
from Tezzaron. The layers are thinned to less than 12 microns, and
the TSV’s themselves are less than 6 microns thick. The size of the
TSV’s are 1.4 square microns, and can be placed with a density of
62,000 TSV’s per square mm.

The resistance (<.35Ω) and capacitance (2fF) of these TSV’s
are extremely small compared to other 3D integration technologies.
They allow for extremely fast and short connections between lay-

Figure 5: Top level view of the Centip3De 7-layer 3D system [17] built on Tezzaron 3D stacking technology and a cross section of
the same process on the 3D-MAPS system [29]. Note the TSV’s are only 6.47 microns deep and the wafer is thinned to less than 12
microns which is important for reducing thermal resistance and RC delays.

ers. In fact, in a 4 layer stack the length of a TSV running the
whole distance of the stack is <50 microns. This allows the XPoint
3D system to create buses that run in the 3rd dimension that add
minimal latency to the 2D bus.

Figure 6: Diagram of the XPoint 3D design.

3.2.2 XPoint 3D Architecture
Figure 6 shows the proposed XPoint 3D system. The coherent

buses are run only along the top layer, and connections to L2’s at
lower levels are made with TSV’s which are 11 microns long per
layer. This pitchfork layout creates a 3D bus that is approximately
the same length as the bus on the top layer. This means that the
effective length of the bus is halved when the system contains 2-
layers, and quartered when spread across 4-layers. To a first order
the latency of the bus grows linearly with cores/layers instead
of linearly with cores as it does in a 2D system. In addition the
L2 cache is banked across multiple layers to improve the aspect
ratio of the cache itself, thereby improving access times and power
consumption of the L2.

3.2.3 Thermal Constraints
As with any 3D chip design, thermal constraints can be a matter

of concern. To verify the system operates in a thermal region that
can be cooled by conventional solutions, we perform analysis of
the system with the HotSpot 5.1 [42] simulator. The thermal char-
acteristics of the Tezzaron process were modeled in HotSpot and
peak power draw numbers were used for the core. Power numbers

Figure 7: HotSpot simulation of the XPoint system on 1 layer,16
core system and across a 4 layer, 64 core system. The peak
temperature of the chip is 92 degrees Celsius on 4-layers.

for the Cortex-A9 were based on published data [2] and scaled to
32nm. Figure 7 shows the simulated system for a single layer and
a 4-layer stack. The low power design of the Cortex-A9 proces-
sor helps to make stacking feasible. The peak temperature of the
4-layer system reaches 92 degrees centigrade, well within conven-
tional cooling solutions. Had the thermal profile been more of an
issue, designs where cores are placed on the left side of the L1’s on
even numbered layers and the right side of the L1’s on odd num-
bered layers could be used to reduce the thermal profile at the ex-
pense of more power to drive the longer point-to-point links. The
HotSpot analysis did not consider the thermal dissipating charac-
teristics of the TSV’s, which would have further reduced the peak
temperature. More details on the component models and method-
ology can be found in Section 4.

3.3 Other Opportunities
This architectural design was done with a system containing pri-

vate L1 caches and shared L2 caches. Many commercial systems
implement private L2 caches and shared L3 caches. The coher-
ence protocol for these systems is different, however the techniques
of interleaving the system will also work in such designs without
modification of the coherence protocol. In such systems the L2
caches would be interleaved the interleaving would be done on the

L2 caches and the L1 could remain coupled with the processor in
either interleaved slices, or as a single L1.

4. EXPERIMENTAL METHODOLOGY

4.1 Component Models
The following sections will describe the models used for simu-

lation. A summary of the components area and speed can be found
in Table 1, details on how each value was arrived at are found in
the corresponding sub-section.

Table 1: Component Areas and Speeds in 32nm
Area/Length Speed/Latency

ARM Cortex-A9 0.38mm2 1.25GHz
L1 (64kB I&D) per core 0.61mm2 1 cycle

L2 (256 kB) per core 1.33mm2 8 cycles
Coherent Bus 0.31mm/core 160 ps/mm

Table 2: 2D Floorplan Sizes and Bus Speeds
Num. of Cores Die Size Bus Length Bus Speed Total L2 Size

8 19mm2 2.48mm >1.25 GHz 2MB
16 38mm2 4.96mm 1.25 GHz 4MB
32 78mm2 10.1mm ∼630 MHz 8MB
64 156mm2 20.1mm ∼315 MHz 16MB

Cores: The system is based on ARM Cortex-A9 cores. Area and
power estimates are drawn from ARM data sheets [2] and scaled to
32nm. The core area in 32nm is 0.38mm2, the speed is 1.25GHz,
and the power is 0.5W .

Caches: Cache sizes and speeds are obtained from a comercial
memory compiler. The total L1 cache size per core is 64kB for
both I- and D-Cache. The cache area is 0.6mm2. The L1 access
time is 1 cycle for the bus based system and 2 cycles in the XPoint
cache system due to the point-to-point link latency. To hide this
latency in the XPoint cache system a 4 cache line, fully-associative
buffer is added as a L0 next to the core. The L0 and L1 are ac-
cessed in parallel. The associativity of the entire L1 is 4-way. When
the system is interleaved, the associativity of each slice is divided.
When the system is split into 8-banks, the associativity is 1-way
per 8 bank caches. The L2 cache size is 256kB per core, 16-way
associative. The die area of the L2 is 1.33mm2 per core, and the
access latency is 8 cycles. The L2 size and associativity are divided
among interleaved slices in the same manner as the L1.

Busses: Bus delays and power estimations were obtained using
a 13-layer metallization stack from an industrial 32nm process. In
this metallization stack there are five 1X, three 2X, two 4X, two
8X, and one 16X metal layers. The 1X metal layers and one of
the 2X metal layers are reserved for local routing (within the core/-
cache). The 8X and 16X metal layers are reserved for power and
clock routing. That leaves two 2X and two 4X layers for global
routing. Bus delays were calculated using wire models from the
design kit and calculated using SPICE including wire parasitics, re-
peaters, and worst case cross-coupling capacitance of neighboring
wires and metal layers. Repeater placement is done using optimally
interleaved spacing as described by Ghoneima and Ismail [20].

The L1 uni-directional point-to-point links can achieve a speed
of 54ps/mm in double spaced 4X metal, permitting a delay of less
than one clock cycle to/from the L1 banks. The L2 snooping bus
requires more complicated bi-directional repeaters and achieves a

maximum speed of 160ps/mm in double spaced 4X metal. As-
suming the L1 caches in the traditional bus based system are mir-
rored across the snooping bus to reduce wire length, the bus length
is 0.31mm per core (about half the length of a core due to mirror-
ing). Table 2 shows the achieved speeds of the bus for each core
count. For the 8 and 16 core system, the bus can operate at the
speed of the cores (1.25GHz), for larger systems the bus is slower.

Table 3: gem5 Simulation Parameters
Component Bus Based System XPoint System
Processor ARM Cortex-A9, 1.25 GHz, 2-Wide, 56 Physical Registers
Cache Block Size 64 Bytes
L0 Cache None 4-entry, fully associative, 1-cycle
L1 Cache 64kB Split I and D Caches

4-way Associative, Div. by number of Slices
1-Cycle Associativity 4-way/#Slices,

2 -cycle
L2 Cache 256 kB per Core, 16-way, 8-cycle
Coherent Bus 312-1250 MHz, 64Bytes
Main Memory 2GB, 50 Cycle Latency

4.2 Simulator & Benchmarks
We evaluate the Bus 2D (conventional bus), XPoint 2D, and XPoint

3D architectures using the gem5 full-system simulator [6]. The
gem5 simulator was extended to accommodate the XPoint inter-
leaved architecture. No modifications to the coherence protocol
were necessary. The gem5 simulator accurately tracks data through-
out the memory system. Because the data is accurately passed
through the system, any bugs in the coherence protocol would man-
ifest themselves as errors while simulating. Table 3 details the sim-
ulation parameters for the studies. To account for non-determinism
in threaded workloads, we randomly perturb memory access la-
tencies and run multiple simulations to arrive at stable runtimes
following the approach described by Alameldeen et al. [1]. A com-
parison to an ideal interconnect is presented in Table 4, which sim-
ulates an interconnect with infinite bandwidth and zero-contention.
Results show the XPoint system achieves speedups within 8% of
ideal, obviating the need for a comparison to an NoC based sys-
tem.

We use benchmarks from the SPLASH2 [48] suite to test the
systems. The SPLASH2 benchmarks are of particular interest for
the study of on-chip interconnects as they have many sharing and
data migration patterns. This is illustrated in the work of Barrow-
Williams et al. [4].

5. RESULTS
In the following sub-sections we will present the results. First

the XPoint 2D system will be analyzed against a traditional bus
based system, showing the decreased bus contention and improved
scalability of the system across various numbers of XPoint slices.
Next results will be presented showing how the improvement of the
bus latency impacts the XPoint 3D system to take scalability even
further. Then an analysis of the speedups of the best configurations
for all 2D and 3D systems will be presented.

5.1 Reducing Bus Contention - XPoint 2D
Analysis of the XPoint 2D system is made based on three key

metrics: Runtime/Speedup, Bus Utilization, and Bus Contention.
The bus contention is plotted in Figure 2, and a description of the
results is presented at the end of Section 2. Figure 8 presents the
other key metrics. The plots in Figure 8 show, on a log-log plot, the
normalized runtime (solid lines) and bus utilization (dotted lines).

Figure 8: Runtime (solid lines) and Bus Utilization (dotted lines) plotted across core counts. A straight line for run-
time represents ideal scaling of the benchmark. As the core count is increased the contention/utilization of the bus is
increased, this leads to non-ideal speedup. For the Bus 2D system many benchmarks do not scale well beyond 16 cores.
The XPoint 2D system improves the scalability to higher core counts.

The ideal scaling of these benchmarks would be a straight line (for
runtime) where the slope is determined by the efficiency of the par-
allel scaling in the application itself (workload imbalance and/or
ratios of serial to parallel code). Bus utilization is a metric from
0 to 1, describing how often the bus is utilized. The bus utiliza-
tion numbers saturate for the Bus 2D systems for most benchmarks
around 32 cores. This saturation correlates with the dramatic in-
crease in bus contention plotted in Figure 2. As the bus utilization
and contention increase, the overall runtimes of the benchmarks
increase. Eventually the increase in contention outweighs the per-
formance gains of more cores, yielding an optimal number of cores
for the system. For the Ocean Contig, Ocean NonContig, and Radix
benchmarks the optimal point for a Bus 2D system is 16 cores. Be-
yond this point the runtime increases, even with the addition of
more cores. Some benchmarks scale slightly better to 32 cores.
There are only two benchmarks that scale to 64 cores on a conven-
tional system. The first is Water Spatial where the working set fits
in the L1 cache. For the second, LU Non-Contig, the runtime line is
straight but with a small slope due to workload imbalance. Giving
this workload 8× the number of cores only results in a 2× speedup.

The XPoint 2D architecture targets benchmarks with scalability
limitations due to contention. The plot shows the effects of differ-
ent degrees of slicing. For the benchmarks whose Bus 2D line is

not straight, the XPoint cache reduces bus contention and lowers the
runtime at high core counts—making the line straighter. For many
benchmarks, like Water N-Squared the XPoint 2D system brings
the line back to linear at 64 cores. However, for some benchmarks,
like Ocean Non-Contig, the XPoint 2D system is only effective up
to 32 cores. This limit occurs because the bus latency is increasing
as the core count is increased, reducing the total bandwidth of the
system effectively creating more contention.

5.1.1 Cache Slice Fairness
As mentioned in Section 3.1.3, by splitting the cache, unfairness

can occur in the allocation of cache lines to slices. This will result
in higher L1 miss rates, as less of the cache is being utilized. This
effect is particularly evident in strided accesses. To quantify the
impact of the cache slicing mechanism we plot a fairness metric
in Figure 10. The metric is derived by dividing the number of ac-
cesses to the most accessed bank by the number of accesses to the
least accessed bank. A fairness of 1 indicates that the cache lines
are divided evenly amongst the slices. For all but 3 benchmarks
the fairness is good, around 1.2. However, for Barnes, FMM, and
LU there is less balance. This corresponds to designs that favor
less slicing for optimal runtime (Figure 8). Overall, there are some
benchmarks that show sensitivity to the slicing allocation, however

Figure 9: Runtime (solid lines) and Bus Utilization (dotted lines) plotted across core counts. A straight line for runtime
represents ideal scaling of the benchmark. All configurations use a cache slicing of 4. XPoint 3D improves the scaling
compared to the XPoint 2D.

the system still shows improvement. We leave exploring more com-
plex hashing functions to balance interleaving for future work.

Figure 10: Fairness of slice allocation. Calculated as the total
number of accesses to the most accessed cache slice divided by
the total number of accesses to the least accessed cache slice. A
completely even distribution has a fairness of 1.

5.2 Improving Bus Latency - XPoint 3D
While the results show that the XPoint2D system scaled well to

32 cores, there were several benchmarks that still had scaling limi-
tations resulting from increased bus delay. By extending the system

in 3D, the bus latencies are decreased and further scaling is possible
for these benchmarks. Figure 9 shows runtime and bus utilization
on the same axes as before, but for XPoint 2D and XPoint 3D de-
signs with 4-slices. For the XPoint 2D benchmarks that did not
scale well—FMM, Ocean Contig, Ocean Non-Contig, Radix, and
Water Spatial—the use of XPoint 3D helps reduce the runtime at
64 cores, making the trend closer to linear. On average, the XPoint
3D improves performance by 28% over the XPoint 2D system at 64
cores.

5.3 Best Configurations
The best performing configurations for each benchmark on each

type of system is listed in Table 4. For systems with uneven slice
utilization the optimal number of slices is less than 8, which corre-
spond to the same benchmarks shown in Section 5.1.1. The aver-
age speedup achieved by the XPoint 2D system is 35× , the XPoint
3D system further improves that number to 45×. On average the
XPoint 2D system performs 1.6× better than the bus, it also outper-
forms the conventional bus in 3D for all but 3 benchmarks. Overall
the XPoint 3D system improves performance by 2.1× compared to
the 2D conventional bus. The XPoint 3D system achieves speedups
within 8% of an ideal interconnect, showing that both the XPoint
2D and XPoint 3D take the scalability of bus based systems far-
ther than commonly thought, making them ideal architectures for
many-core systems of 32-64 cores.

Table 4: A Breakdown of the best performing parameters on each system for each benchmark. Speedup is presented over a unipro-
cessor system with 2MB L2. Ideal Interconnect allows infinite requests on the bus simultaneously, with a single cycle latency. Super
linear speedups occur for FFT due to the increased L2 size available in the 64 core system. The XPoint 3D design is within 8% of the
speedup of an ideal interconnect.

Bus 2D XPoint 2D Bus 3D XPoint 3D Ideal Interconnect
Cores Speedup Cores Slices Speedup Cores Layers Speedup Cores Slices Layers Speedup Cores Speedup

Barnes 64 33× 64 8 49× 64 4 58× 64 2 4 60× 64 64×
Cholesky 64 18× 64 8 28× 64 4 27× 64 2 4 29× 64 30×

FFT 32 22× 64 8 59× 64 4 41× 64 8 4 83× 64 86×
FMM 32 17× 64 8 19× 64 4 21× 64 8 4 25× 64 39×

Lu Contig 64 38× 64 2 39× 64 4 41× 64 2 4 41× 64 42×
Lu NonContig 64 18× 64 8 19× 64 4 20× 64 4 4 21× 64 22×
Ocean Contig 16 13× 32 8 30× 64 4 23× 64 8 4 54× 64 60×

Ocean NonContig 16 13× 32 8 29× 64 4 18× 64 8 4 53× 64 63×
Radix 16 15× 32 8 28× 64 4 17× 64 8 4 48× 64 50×

Raytrace 32 27× 64 8 32× 64 4 38× 64 8 4 43× 64 52×
Water NSquared 32 28× 64 8 55× 64 4 51× 64 8 4 59× 64 59×

Water Spatial 64 50× 64 4 60× 64 4 61× 64 8 4 62× 64 62×
Geometric Mean 22× 35× 31× 45× 49×

Overall, the results have shown that the XPoint architecture scales
to 64 core systems with an unmodified bus based snooping proto-
col. Given the infrastructure already in place for verifying these
types of systems, XPoint 2D presents a desirable approach to inter-
connect at 32-64 cores in 32nm. As 3D technology becomes part
of the commercial mainstream the XPoint 3D systems will further
scale bus based designs to higher core counts.

6. RELATED WORK
Our baseline builds on memory interleaving techniques devel-

oped in the 1980’s to address interconnect congestion in board
level multi-processors [46]. However, integration levels and pin
constraints limited their practicality. We show that with new archi-
tectural techniques these designs are now practical for single chip
implementations, where higher cache associativites and a greater
number of wires are available. We further differentiate our de-
sign from theirs with the use of on-die point-to-point connections
from the core to the L1’s to improve latency, the addition of L0
buffers to hide increased L1 access time, and 3D integration to
reduce bus latency. Many other researchers have looked at mul-
tiple bus systems in both interleaved and non-interleaved archi-
tectures [5, 10, 15, 44]. However, none of their work explicitly
shows how interleaved busses can be used to scale unmodified co-
herence protocols. Recent work by Udipi et al. [45] also seeks to
scale conventional snooping coherence to many-core systems with
the design of a segmented bus and an associated filtering mecha-
nism. Only in passing do they mention interleaved buses and they
leave the evaluation of such designs as future work. In addition
the XPoint system shows how 3D integration can be used to im-
prove the scalability of the bus, an approach not considered in any
of these previous works.

There have also been many papers on the topic of 3D integra-
tion [7, 28, 34, 47]. While these papers target increased system per-
formance, scaling coherence protocols were not their primary pur-
pose. Other papers on 3D interconnects [30, 33, 37] have extended
the research of NoC designs to 3D chips. These papers seek to re-
duce hop counts in NoC systems by leveraging the 3rd dimension
to implement higher radix NoC topologies, such as hyper-cubes
and flattened butterflies. The XPoint 3D architecture shows that
both 2D and 3D stacked systems with conventional snooping co-
herence can be extended to systems of 64 cores, without the need
for complex designs that require extensive verification effort.

Finally there has also been some related work on interleaving

main memory [21] and caches [22] for VLIW systems, however
none of these designs addresses the scalability of cache coherence
protocols or 3D integration.

7. CONCLUSION
Design, verification, and validation of coherence protocols in

comercial chips is difficult and expensive. Within industry there is
a large amount of infrastructure built around validating current in-
terconnect solutions. While distributed directory architectures rep-
resent one approach to scalability, their design is more complex and
less familiar compared to current bus-based snooping mechanisms
and therefore present a significant hurdle to current validation tech-
niques. On the other hand, simply scaling traditional bus solutions
leads to increased contention and latency on the bus.

To address the scalability of existing solutions while leaving the
coherence protocol unmodified, this paper proposed the XPoint ar-
chitecture. The XPoint system showed that bus-based snooping co-
herence can scale to 64 core systems by leveraging architectural
and layout enhancements designed to combat the degraded speed
of long busses and increased contention at large core counts. Over-
all the XPoint system showed a 29× and 45× speedup for 32 and 64
core systems respectively(a 2.1× improvement over a 64 core con-
ventional bus and within 8% of a 64 core system with an ideal in-
terconnect). Measurements also showed that the XPoint system de-
creased the bus contention of a 64 core system to only 13% higher
than that of an 8-core design.

8. REFERENCES
[1] A. Alameldeen and D. Wood. Variability in architectural

simulations of multi-threaded workloads. In The Ninth
International Symposium on High-Performance Computer
Architecture, Feb 2003.

[2] ARM Ltd. http://www.arm.com/products/processors/cortex-
a/cortex-a9.php,
2011.

[3] M. Baron. Tilera’s Cores Communicate Better: Mesh
Networks and Distributed Memory Reduce Contention
Among Cores. Microprocessor Report, 2007.

[4] N. Barrow-Williams, C. Fensch, and S. Moore. A
communication characterisation of SPLASH-2 and parsec. In
IISWC, 2009.

[5] J. Bertoni, J.-L. Baer, and W.-H. Wang. Scaling shared-bus
multi-processors with multiple buses and shared caches: a

performance study. Microprocess. Microsyst., 16:339–350,
September 1992.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 simulator: Modeling
networked systems. IEEE Micro, 26(4):52–60, 2006.

[7] B. Black, M. Annavaram, N. Brekelbaum, J. Devale,
L. Jiang, G. H. Loh, D. Mccauley, P. Morrow, D. W. Nelson,
D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, and
C. Webb. Die stacking (3D) microarchitecture. In In
Proceedings of MICRO-39, 2006.

[8] G. Blake, R. Dreslinski, and T. Mudge. A survey of multicore
processors. In Signal Processing Magazine. IEEE, 2009.

[9] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Dynamic
verification of cache coherence protocols, 2001.

[10] M. J. Carlton. Multiple-bus, scalable, shared-memory
multiprocessors, 1995.

[11] A. Charlesworth. Starfire: Extending the SMP envelope. In
IEEE Micro, 1998.

[12] D. Culler, J. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1998. The Morgan Kaufmann Series in
Computer Architecture and Design.

[13] A. DeOrio, A. Bauserman, and V. Bertacco. Post-silicon
verification for cache coherence. In Computer Design, 2008.
ICCD 2008. IEEE International Conference on, pages 348
–355, oct. 2008.

[14] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification
as a hardware design aid. In Computer Design: VLSI in
Computers and Processors, 1992. ICCD ’92. Proceedings.,
IEEE 1992 International Conference on, pages 522 –525, oct
1992.

[15] M. Dubois. Throughput analysis of cache-based
multiprocessors with multiple buses. Computers, IEEE
Transactions on, 37(1):58 –70, jan 1988.

[16] E. A. Emerson and V. Kahlon. Exact and efficient
verification of parameterized cache coherence protocols. In
Correct Hardware Design and Verification Methods
(CHARME’03), LNCS 2860, pages 247–262. Springer, 2003.

[17] D. Fick, R. Dreslinski, B. Giridhar, G. Kim, S. Seo,
M. Fojtik, S. Satpathy, Y. Lee, D. Kim, N. Liu,
M. Wieckowski, G. Chen, T. Mudge, D. Sylvester, and
D. Blaauw. Centip3De: A 3930 dmips/w configurable
near-threshold 3D stacked system with 64 ARM Cortex-M3
cores. To appear in IEEE International Solid-State Circuits
Conference, San Francisco, CA, 2012, 2012.

[18] M. Galles and E. Williams. Performance optimizations,
implementation, and verification of the sgi challenge
multiprocessor. In System Sciences, 1994. Proceedings of the
Twenty-Seventh Hawaii International Conference on, 1994.

[19] S. M. German. Formal design of cache memory protocols in
ibm. Form. Methods Syst. Des., 22:133–141, March 2003.

[20] M. Ghoneima and Y. Ismail. Optimum positioning of
interleaved repeaters in bidirectional buses. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(3):461 – 469, march 2005.

[21] S. Ghosh, J. Ghosh, and S. Ray. Architecture of configurable
k-way c-access interleaved memory. In Process Automation,
Control and Computing (PACC), pages 1 –5, july 2011.

[22] E. Gibert, J. Sanchez, and A. Gonzalez. An interleaved cache
clustered VLIW processor. Architecture, pages 210–219,
2002.

[23] S. Gupta, M. Hibert, S. Hong, and R. Patti. Techniques for
producing 3D ICs with high-density interconnect. White
Paper, 2004.

[24] R. Haring. The IBM Blue Gene/Q Compute chip+SIMD
floating-point unit. In HotChips 23: A Symposium on
High-Performance Chips, 2011.

[25] Intel. Intel core2 extreme processor x6800 and intel core2
duo desktop processor e6000 and e4000 sequence, 2008.

[26] T. Johnson and U. Nawathe. An 8-core, 64-thread, 64-bit
power efficient sparc soc (niagara2). In International
symposium on Physical design, ISPD ’07, pages 2–2, New
York, NY, USA, 2007. ACM.

[27] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway.
The amd opteron processor for multiprocessor servers. IEEE
Micro, 23:66–76, March 2003.

[28] T. Kgil, S. D’Souza, A. G. Saidi, N. L. Binkert, R. G.
Dreslinski, T. N. Mudge, S. K. Reinhardt, and K. Flautner.
PicoServer: using 3D stacking technology to enable a
compact energy efficient chip multiprocessor. In ASPLOS,
pages 117–128, 2006.

[29] D. H. Kim, K. Athikulwongse, M. B. Healy, M. M. Hossain,
M. Jung, I. Khorosh, G. Kumar, Y.-J. Lee, D. L. Lewis, T.-W.
Lin, C. Liu, S. Panth, M. Pathak, M. Ren, G. Shen, T. Song,
D. H. Woo, X. Zhao, J. Kim, H. Choi, G. H. Loh, H.-H. S.
Lee, and S. K. Lim. 3D-MAPS: 3D massively parallel
processor with stacked memory. To appear in IEEE
International Solid-State Circuits Conference, San
Francisco, CA, 2012, 2012.

[30] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie,
V. Narayanan, M. S. Yousif, and C. R. Das. A novel
dimensionally-decomposed router for on-chip
communication in 3D architectures. SIGARCH Comput.
Archit. News, 35:138–149, June 2007.

[31] J. Leary, M. Talupur, and M. R. Tuttle. Protocol verification
using flows: An industrial experience. In IEEE Formal
Methods in Computer-Aided Design, 2009.

[32] K. M. Lepak and M. H. Lipasti. Temporally silent stores. In
In Proceedings of PACT-2000, pages 30–41, 2002.

[33] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,
and M. Kandemir. Design and management of 3D chip
multiprocessors using network-in-memory. In Computer
Architecture, 2006. ISCA ’06. 33rd International Symposium
on, pages 130 –141, 0-0 2006.

[34] G. H. Loh, Y. Xie, and B. Black. Processor design in 3D
die-stacking technologies. Micro, IEEE, 27(3):31 –48,
may-june 2007.

[35] A. Meixner. Error detection via online checking of cache
coherence with token coherence signatures. In In
Proceedings of HPCA-13, pages 145–156, 2007.

[36] R. Merritt. Inside Intel’s Sandy Bridge architecture.
[37] V. Pavlidis and E. Friedman. 3-D topologies for

networks-on-chip. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 15(10):1081 –1090, oct.
2007.

[38] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive
verification with invisible invariants, 2001.

[39] F. Pong and M. Dubois. Verification techniques for cache
coherence protocols. ACM Comput. Surv., 29:82–126, March
1997.

[40] J. Schanin. The design and development of a very high speed

system bus - the encore multimax nanobus. In ACM Fall
Joint Computer Conference, 1986.

[41] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and
J. Joyner. Power5 system microarchitecture. In IBM Journal
of Research and Development, 2005.

[42] K. Skadron, M. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan. Temperature-aware
microarchitecture. In Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on,
pages 2 – 13, june 2003.

[43] D. Sorin, M. Hill, and D. Wood. Dynamic verification of
end-to-end multiprocessor invariants. In Dependable Systems
and Networks, pages 281 – 290, june 2003.

[44] S. Thakkar, M. Dubois, A. Laundrie, and G. Sohi. Scalable
shared-memory multiprocessor architectures. Computer,
23(6):71 –74, jun 1990.

[45] A. Udipi, N. Muralimanohar, and R. Balasubramonian.
Towards scalable, energy-efficient, bus-based on-chip
networks. In High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on,
pages 1 –12, jan. 2010.

[46] D. Winsor and T. N. Mudge. Crosspoint cache architectures.
In In International Symposium on Computer Architecture,
pages 266–269, 1987.

[47] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee. An
optimized 3D-stacked memory architecture by exploiting
excessive, high-density TSV bandwidth. In High
Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pages 1 –12, jan. 2010.

[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. In ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture, pages
24–36, New York, NY, USA, 1995. ACM.

[49] D. Wood, G. Gibson, and R. Katz. Verifying a multiprocessor
cache controller using random test generation. Design Test of
Computers, IEEE, 7(4):13 –25, aug 1990.

[50] M. Zhang, A. R. Lebeck, and D. J. Sorin. Fractal coherence:
Scalably verifiable cache coherence. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 471–482,
Washington, DC, USA, 2010. IEEE Computer Society.

