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 The demise of dennard [1] scaling in recent 
years has led to increasing power densities with 
each generation of technology. The ability to cool, or 
extract waste energy from, a processor has remained 
relatively constant, and subsequently the ability to 
activate all portions of a chip multiprocessor (CMP) 
simultaneously is becoming successively limited. 
Consequently, at any given time, large regions of 
a chip will remain inactive in order to not exceed 
thermal design budgets of the package and cooling 
system, dubbed dark silicon [2]. To help overcome 
dark silicon, there has been proposals to aggres-
sively voltage scale and operate at near-threshold 
computing (NTC) supply voltages [3]–[5], thus 
improving energy efficiency at the cost of moderate 
performance loss. Slower clock frequencies can be 
balanced through parallelizing a workload across 
additional cores, transforming dark silicon to dim 
silicon [6] by trading high single-core performance 
for energy-efficient many-core operation.

A previous analysis 
[7] of the near-thresh-
old (NT) region across 
planar nodes (180–32 
nm) showed NTC energy 
improvement is becom-
ing less effective with 
each generation, with 
only a  4 ×  energy gain in 

32 nm for performance sensitive workloads. While 
this gain is not insignificant, NTC is needed most in 
new technology nodes because of increased power 
densities, yet energy gain in 32 nm is nearly half of 
the gain in 180 nm.

Foundries have initiated a fundamental switch 
from planar to FinFET transistors at the 22–16-nm 
node and below, opening a new chapter in Moore’s 
law. However, NTC in FinFET is largely unexplored. 
FinFET differs significantly from planar technology, 
with much improved channel characteristics, which 
have the potential to dramatically improve NT 
 performance. This paper examines FinFET’s impact 
on NT.

First, we present an analytical model of NT’s 
energy gain and, by using this model along with 
the methodology in the Methodology section, key 
device characteristics that are responsible for NT 
performance in FinFETs are analyzed in the Device 
characteristics section. With this knowledge, we 
then compare NTC performance in three planar 
technologies and three FinFET technologies from 40 
to 7 nm.

Editor’s note:
Near-threshold operations provide a powerful knob for improving energy 
efficiency and alleviating on-chip power densities. This article explores 
the impact of newest FinFET CMOS technologies (from 40 to 7 nm) on 
near-threshold computing in terms of performance and energy efficiency.

– Muhammad Shafique, Vienna University of Technology

Lucian Shifren, Brian Cline, and Saurabh Sinha
ARM Inc.
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Analytical model
A simple analytical model is introduced to better 

understand underlying effects on device parameters. 
Though this model does not have high accuracy, 
especially for recent technology nodes, it is benefi-
cial in understanding the effects of device parame-
ters on NTC performance.

Voltage scaling can be viewed as a continuum 
of three operating scenarios from traditional nomi-
nal voltage operation to ultralow-voltage operation 
(Table 1). Nominal voltage operates a core at its 
peak clock frequency, therefore single-threaded per-
formance is maximized. However, nominal voltage 
also consumes the most power and thus limits the sys-
tem to the fewest number of cores that can be active 
within a thermal design power budget. Scaling down 
voltage to the ultralow, subthreshold region greatly 
reduces power demands, allowing for more cores 
to operate within a power budget. However, voltage 
scaling also significantly degrades clock frequency, 
so ultralow voltage is not suitable for workloads that 
are latency sensitive.

NT is applied to reduce the energy of a task when 
latency sensitive, balancing ultralow and nominal 
operating modes by parallelizing a task at low voltages 
to regain lost performance from clock frequency deg-
radation [5]. A previous study [7] developed a sys-
tematic methodology for defining the NT operating 

point by considering performance sensi-
tivity through fixing the latency of a task to 
that of the task running on a single core at 
nominal voltage. As voltage is lowered to 
NT, clock frequency decreases and subse-
quently latency increases. However, this 
latency increase can be balanced through 
speeding up the task through parallelism 
(Table 1, middle). This is the definition of 
NT we use in this work. As an overall metric 
of system performance the figure of merit 
(FoM) is a number of tasks within a ther-
mal budget divided by task latency. If a task 
consumes  1 / X  of the fixed power budget, 
then  X  tasks can be run on the system. If 
each task becomes more power efficient, 
or latency improves for the same power 
consumption, then FoM will increase.

The energy of a task can be split up into 
two categories, dynamic and static, given by

   E  total   =    E  dynamic   +    E  static   . (1)

Dynamic energy is the working energy needed to 
switch inputs of transistors and values of wires for 
calculations or communications during a task’s exe-
cution. Dynamic energy can be modeled as a charge 
on a capacitor, and thus varies quadratically with 
supply voltage

   E  dynamic   ∝  C  switch    V  dd  2   . (2)

Static energy is caused by leakages of a circuit 
regardless of whether a task is executing. Static 
energy is usually dominated by subthreshold leak-
age through a transistor’s source and drain and is 
dependent on the supply voltage and the period of 
time for a task to run

   E  static   ∝  I  leak    V  dd    T  task   . (3)

The time for task completion depends inversely 
on the clock frequency of a core which, to first order, 
is inversely proportional to circuit delay and can be 
modeled using the alpha power law of a transistor [8]

   T  task   ∝ 1 / f  ∝   
 V  dd   _______ 

  ( V  dd   −  V  t  )    α 
   . (4)

Note that the alpha power law is used as a first- 
order approximation in this work to understand gen-
eral trends, but plotted results use more accurate 
HSPICE models. Additionally, actual task comple-
tion scaling depends not only on circuit delay of core 
logic, but also on the many levels of memory hierar-
chy on a processor. In this work, we only consider 

 
Table 1 Voltage scaling operating scenarios, from ultralow supply voltages to 
traditional nominal-voltage operation.
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scaling of core logic gates. From the above relation-
ships, the dynamic energy monotonically decreases 
with supply voltage while the leakage energy initially 
decreases because   I  leak    and supply voltage drop. 
However, the task completion time rises exponen-
tially at NT voltages, and thus static energy increases 
as   V  dd    continues to be lowered. Energy is minimized 
when the margin cost of dynamic and static energy 
are in balance, in essence when the dynamic energy 
gain of scaling down voltage is equal to the marginal 
cost of static energy

    
δ  E  dynamic   ______ δ  V  dd  

   = −   
δ  E  static   _____ δ  V  dd  

   .  (5)

Let   V  opt    be the operating voltage at which energy 
minimization occurs.

Up until now we have neglected the energy 
required to maintain task latency. Parallelism 
overhead of a program can be modeled through 
Amdahl’s law [9], where the speedup of a paral-
lelized program is given by

  Speedup =   n _______ 
1 −  P  s   +  P  s   n

    (6)

where  n  is the number of cores parallelized over and   
P  s    is the percent serial coefficient of the workload.  
A perfectly parallelizable program has a   P  s   =  0%, while 
higher percent serials indicate less of the code is par-
allelizable, up until   P  s   =  100%, implying the workload 
is completely serial. In this work, we consider a fixed 
latency constraint when performance sensitive, so 
that the speedup through parallelism has to balance 
any performance loss from longer circuit delay as a 
consequence of scaling to NT

  Speedup =   
 T  task, NTC  

 _______ 
 T  task, nominal  

   .  (7)

For a task that does have parallelism overhead, 
and is not perfectly parallel, the energy is derated by 
a factor of ( n / Speedup) compared to the perfectly 
parallelizable baseline. The total energy when par-
allelizing is then

   E  total, parallel   ∝   n _______ 
Speedup

    E  total, ideal    (8)

where   E  total, ideal    is the energy of a perfectly paral-
lelizable workload. Since Amdahl’s law has asymp-
totic behavior, this ratio worsens when   V  dd    is very 
low, thus causing   E  total, parallel    to deviate significantly 
from   E  total, ideal    for workloads that are not perfectly 
parallelizable. A workload that is latency insensi-
tive does not need to be parallelized across cores 
and thus does not incur parallelization overhead, 
hence always has energy usage equal to the ideally 

parallelizable (Speedup  = n )  baseline energy of   
E  total, ideal   .

Figure 1 demonstrates how parallelism over-
heads increase the minimum energy and decrease 
voltage scaling’s efficacy. With a perfectly paral-
lelizable program (  P  s   =  0%), the minimum energy is 
8% of the energy at nominal. A serial coefficient of   
P  s   =  2% raises minimum energy to 28% of the energy 
of nominal for this example technology. Figure 1 
includes FoM normalized to nominal voltage, show-
ing improvement as energy per task is reduced. The 
number of cores in which the task is parallelized,  n ,  
is 10, 9, and 6, when   P  s    is 2%, 5%, and 10%, respec-
tively. For   P  s   =  0%, approximately 30 cores would be 
required to maintain a fixed latency.

Methodology
The framework in this work is similar to [7] and is 

split into two components: circuit characterization, 
to extract circuit delay and energy, and architec-
tural models to account for parallelism overheads. 
For this work, ARM developed a set of predictive 
technology HSPICE models that include effects spe-
cific to FinFETs. The models were created based on 
published numbers, historical trends, and informed 
assumptions and calculations. The circuit simu-
lations in this work use HSPICE BSIM Level 72 for 
FinFET 7-, 10-, and 14-nm models, and Level 54 for 
planar 20-, 28-, and 40-nm models.

Figure 1. Total energy of a task increases with a 
higher serial coefficient (  P  s   ) since parallelism  
overheads limit voltage scalability as task  latency 
is fixed. FoM is improved as energy per task is  
reduced.
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Predicting future technology nodes is difficult as 
many technological challenges have yet to be over-
come. The International Technology Roadmap for 
Semiconductors (ITRS) provides estimates of many 
future device parameters. However, ITRS reports 
are driven by future technology requirements and 
are not necessarily representative of what is realiz-
able. Therefore, ITRS tends to provide an optimistic 
outlook while industry estimates are more conserv-
ative [2]. Additionally, ITRS does not provide simu-
lation device models, so ITRS data cannot be used 
directly to gauge efficacy of voltage scaling.

The canonical circuit simulated to characterize volt-
age scalability is a chain of 31 inverters in fanout-of-4 
(FO4), with a 15% activity factor to emulate reasonably 
deep processor pipelines. Though actual critical paths 
are composed of more complex gates, we found invert-
ers to be accurate for comparing performance and 
energy between operating voltages and technology.

Ease of parallelism was modeled through Amdahl’s 
equation [9] to illustrate sensitivity to performance 
loss from voltage scaling. We chose an Amdahl serial 
coefficient of 2% which is higher than all but two of 
the benchmarks [7] from SPLASH-2 [10], a scientific 
benchmarks intended to evaluate parallel systems.

Device characteristics
Transistor devices have a multitude of interre-

lated characteristics, but we focus on a few key 

parameters relevant to FinFET. We first examine 
the effects of three basic device characteristics 
impacting NT performance: drain-induced barrier 
lowering, subthreshold slope, work function (i.e., 
threshold voltage). Then, we expand this analy-
sis by including within-cell and back-end-of-line 
parasitics.

Work function
Work function changes the transistor’s thresh-

old voltage   V  t   , with lower threshold voltages exhib-
iting increased leakage. If leakage is a significant 
portion of the total energy, a lower threshold volt-
age negatively impacts voltage scalability since 
static energy is more significant and therefore   
V  opt    is higher. However, threshold voltage impacts 
clock frequency scaling through changing transis-
tor on current   T  task, NTC   ∝ 1 /   ( V  dd   −  V  t  )    α  . Figure 2, top, 
shows normalized FO4 circuit delay (i.e.,   T  task, NTC   )  
for five transistor threshold voltages (  V  t    is 282, 
213, 159, 104, and 47 mV for 0.6–2800 nA/ μ m). 
The 0.6-nA/ μ m leakage device exhibits the worst 
 circuit delay voltage scalability. For instance, at  
  V  dd   =  360 mV the FO4 delay is  10 ×  higher than at 
the nominal voltage of   V  dd   =  700 mV. Therefore, 
lower   V  t    devices can voltage scale to lower   V  dd    
with the same FO4 degradation.

Better delay scalability allows a task to 
operate at lower   V  dd    while maintaining perfor-
mance, as less parallelism is needed for a fixed 
latency  constraint. The FoM across   V  t    is shown in 
Figure 2, bottom. The 0.6-nA/ μ m device has peak 
FoM of 360 mV; below this parallelism overhead 
becomes significant. The 6- and 40-nA/ μ m device 
voltages scale lower and have better FoM since 
they exhibit less FO4 delay degradation. Despite 
very low   V  opt   , the 350- and 2800-nA/ μ m devices 
are not good because leakage dominates energy 
overhead.

For the 2% serial coefficient workload, the  
40-nA/ μ m device achieved the best FoM, with an 
energy gain of  8 . 7 ×  at a   V  opt   =  220 mV. Devices with 
this order of magnitude of leakage are known as 
high-performance (HP) transistors as defined by 
ITRS. Analysis in the subsequent sections uses the 
HP device as a baseline in which to compare.

Drain-induced barrier lowering
Drain-induced barrier lowering (DIBL) is a 

short-channel effect that reduces threshold voltage 
Figure 2. Circuit delay scaling (top) and FoM  (bottom) 
for varying threshold voltage in 7-nm  FinFET.
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as drain-source voltage   V  ds    increases. This can be 
modeled through [11]

  V  t   =  V  t0   − η  V  ds   =  V  t0   − η  V  dd   

where   V  t0    is the threshold voltage with no drain-source 
potential and  η  is the DIBL coefficient (typically around 
100 mV/V [11]). As   V  dd    is lowered, DIBL causes   V  t    to 
increase and therefore the transistor overdrive volt-
age   V  ov   =  V  dd   −  V  t    rapidly collapses and severely limits  
voltage scalability. This directly affects task 
 completion time

  T  task, NTC   ∝ 1 /   ( V  dd   −  V  t  )    α  = 1 /  V  ov   α  .

 Therefore, DIBL also affects the speedup needed 
to maintain a latency constraint. As the DIBL coeffi-
cient  η  increases,   T  task, NTC    lengthens, as shown in 
Figure 3. Each device is tuned to match both off cur-
rent and the on current at nominal supply voltage of 
the other devices.

For workloads that are sensitive to perfor-
mance, the poor voltage scalability in clock fre-
quency translates to limited energy gains and an 
increasing   V  opt    as more parallelism is required 
(Figure 3, bottom). Therefore, an improved 
(lower) DIBL coefficient directly improves NT 
energy gains and performance in NT for latency 
sensitive applications.

For latency insensitive workloads, energy and   
V  opt    do not change significantly and, in fact, leakage 

can be slightly improved at low voltages 
because of increased threshold voltages.

Subthreshold slope
Subthreshold slope (  S  S   ) is the reduc-

tion in drain–source current when thresh-
old voltage is raised, typically expressed 
as mV’s per decade of reduction, which 
can be modeled as [11]

  I  leak   =  I  ds0   exp (   
 −V  t   ___ 
n  V  T  

  ) . 

The denominator  n  V  T    sets the 
subthreshold slope of the device. 
Subthreshold slope is given in units of 
mV/dec, and a steeper slope (smaller 
mV/dec) allows for a lower threshold 
voltage to achieve the same leakage, 
as less mV’s are required to decimate 
source–drain leakage currents. Lower 
threshold voltage is desirable to increase 
transistor headroom. Two things hap-
pen as subthreshold slope increases 

(becomes shallower): 1) for the same threshold volt-
age, leakage increases; and 2) the current drivability 
of the transistor improves (i.e., the transistor is better 
able to drive a load at lower voltages).

Leakier transistors cause the total energy at NT to 
increase, however increased drivability improves   
T  task, NTC    scaling with   V  dd   , as shown in Figure 4,  

Figure 3. Circuit delay scaling (top) and FoM  (bottom) 
as DIBL coefficient increases in 7-nm  FinFET.

Figure 4. Circuit delay scaling (top) and FoM  (bottom) 
as subthreshold slope becomes less steep in 7-nm 
FinFET.
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top, with increasing subthreshold slope (higher 
mV/dec). These two effects (higher leakage and 
better drivability) oppose each other for perfor-
mance sensitive workloads, thus   V  opt    stays relatively 
constant (Figure 4, bottom). However, for latency 
insensitive workloads, where   P  s   =  0%, improved 
circuit delay scaling has no impact on energy and 
thus increases both   V  opt    and total energy, limiting 
achievable energy efficiency gains.

Back-end-of-line and within-cell parasitics
Transistors are interconnected through wires and 

vias, thus back-end-of-line (BEOL) parasitic capaci-
tance and resistance needs to be considered when 

analyzing voltage scaling performance. Within-cell 
parasitics are added to the characterization simula-
tions in this study by extracting representative stand-
ard cell layouts of  1 × -sized inverters in the predictive 
technologies provided by ARM. These parasitic mod-
els include source, drain, and gate resistance due to 
trench contacts and local interconnects introduced 
at sub-20-nm nodes and the corresponding coupling 
capacitances between input/output pins and power 
rails. Within-cell parasitics contribute up to half of 
the total gate delay.

Wire parasitics are modeled in our HSPICE simu-
lations through  π -models [12] of predicted resistance 
and capacitance per unit length of a low-level metal 
wire with minimum width and spacing. The wire 
length was swept across multiples of minimum track 
pitch, from 150 tracks to 1200 tracks. Fanout-of-4 
circuit delay was measured and, though the abso-
lute delay increases as within-cell and wire load is 
added, energy-efficiency gain is nearly identical 
across the different wire lengths in 7 nm. The abso-
lute FoM is worse with longer wire lengths because 
of added capacitance and FO4 delay. When FoM is 
normalized for each individual wire length at 0.7 V, 
the FoM is relatively unchanged, thus BEOL does not 
significantly impact voltage scaling analysis in 7-nm 
FinFET. Older technologies are impacted more by 
BEOL as we show in the next section.

Technology trends
In this section, we expand the analysis to older 

FinFET and planar technology nodes. Models for all 
six technology generations, provided by ARM, target 
HP transistors (40-nA/ μ m leakage). By consistency 
targeting the models, better consistency is obtained 
compared to [7] which used disparate technology 
models from different foundries.

The energy gain across the six technology nodes 
is shown in Figure 5, top, both without and with 
BEOL parasitics. Of the planar nodes, 40 nm has the 
best energy gain at 6.2–7.2 ×  and this reduces in 28 
and 20 nm to 3.5 ×  and 3.3 × , respectively, confirm-
ing the trends seen in [7]. Energy gain is diminished 
in newer planar nodes because of stagnated   V  t    but 
lower nominal   V  dd    and other device effects causing 
poor circuit delay scaling. 

Transitioning to FinFET in 14 nm shows much bet-
ter energy gains of 9.3–10.7 ×  because threshold volt-
age has dropped by approximately 210 mV, with the 
same leakage characteristics, and DIBL coefficient 

Figure 5. Energy gain and FoM across technology 
(top) and   V  opt    across technology (bottom).
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cores, requiring further research on building effi-

cient parallel systems.
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