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ABSTRACT 

Thirty-four undergraduates implemented a MIPS R2000 
processor for an introductory CMOS VLSI design course.  This 
included designing a microarchitecture in Verilog, developing 
custom PLA generation and ad-hoc random testing tools, 
creating a standard cell library, schematics, layout, and PCB 
test board.  The processor was fabricated by MOSIS on an AMI 
0.5-micron process, included 160,000 transistors, and ran at 
7.25 MHz. 
KEYWORDS: MIPS, RISC. 
 
1  Introduction 

MIPS is a family of 32-bit and 64-bit computer processors 
used for many embedded applications, including network 
routers, PDAs, and game consoles such as the Sony PlayStation 
Portable.  A MIPS processor is classified as a Reduced 
Instruction Set Computer (RISC) processor, because of its small 
number of instructions and addressing modes, in contrast to 
Complex Instruction Set Computers (CISC), such as the Intel 
x86 architecture. RISC favors less complexity to streamline 
hardware implementation, relying on software optimization.  
Examples of previous RISC processors include ARM, DEC 
Alpha, and MIPS.  Modern Intel and AMD x86 processors are 
RISC-like, implementing RISC execution units and using 
microcode to execute CISC instructions. 

MIPS was originally invented as part of a Stanford research 
project [1] and later brought to market by newly-started MIPS 
Corporation in 1985, releasing the MIPS R2000 running at 
8 MHz on 2.0 micron process.  In 1988 the R3000 was released, 
improving performance to eventually 40 MHz on a 1.2 micron 
process.  Both used approximately 110,000 transistors and 
included cache controllers, which could use external memory 
chips as processor cache.  The R2000 supported 32 kB of data 
cache and 64 kB of instruction cache.  The R3000 doubled the 
amount of data cache.  Later revisions of the chip, including the 
R4000, expanded the chip to 64-bit instructions and processing 
[2]. 

As part of E158: Introduction to CMOS VLSI, thirty 
undergraduates at Harvey Mudd College, advised by Professor 
David Money Harris, and four students at the University of 
Adelaide advised by Professor Braden Phillips, designed, 
fabricated and tested an R2000-compatible MIPS processor in a 
semester.  Unlike the original R2000/R3000, the data and 
instruction caches are on-chip.  The project included a cell 
library, logic design, schematics, custom layout, a compiler 
chain, a test board, and custom tools.  This project provided 
hands-on VLSI experience and exposed students to working in a 
large design team on a nontrivial problem.  
 
 
 

2  MIPS Microarchitecture 
At the beginning of the semester, four students quickly 

designed and implemented logic for the microarchitecture, so 
that the other students could begin work on schematics and 
layout.  The RTL was coded in Verilog and simulated in 
Modelsim.  More detailed information about the 
microarchitecture and downloadable code is available on the 
hmc-mips Google Code website [3] and is released as open 
source under the MIT license agreement.   

The MIPS architecture includes thirty-two general-purpose 
32-bit registers and fifty-eight instructions, each 32 bits long.  
Some R2000 processors have external floating-point units 
(FPUs).  Our design did not include support for an FPU. 

Figure 1 shows a high-level block diagram of the processor.  
The instructions are processed in a five-stage pipeline:  fetch, 
decode, execute, memory, and writeback.  Instructions are read 
from the instruction cache during the fetch stage, from the 
memory address stored in the program counter (PC).  During the 
decode stage, data is read from the triple-ported register file and 
the controller configures how the instruction will be manipulated 
in each stage, by starting a state machine.  Jumping or branching 
may also occur in the decode stage.  In the execute stage 
arithmetic operations are performed and values are shifted.  
Additionally, reads and write from the dedicated multiply/divide 
unit are performed during this stage, as will be discussed later.  
Data cache reads and writes are performed during the memory 
stage.  Finally, the writeback stage writes values to the register 
file. 

 

 
 

Figure 1: Block Diagram of MIPS Processor 
 
Because jumps are processed during the decode stage, the 

next instruction has already been read from memory by the fetch 
stage.  Instead of flushing the pipeline, the instruction is 
processed.  This is known as the “branch delay slot” and must be 
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considered by the compiler or assembly programmer.  A hazard 
detection unit in the controller detects when data is unavailable, 
because of a cache miss or unprocessed instruction, and stalls 
the CPU accordingly. 

A coprocessor handles exceptions and holds configuration 
bits.  Only a few configuration bits are used for the R2000 
architecture, and are mostly used to enable/disable exceptions 
and to configure the caches.  The MIPS architecture supports 
exception handling and interrupts using so-called "precise 
exceptions." This means that when an exception occurs, a single 
instruction is labeled at-fault. Every instruction before the 
offending instruction completes in its entirety and anything after 
(as well as the offending instruction itself) has no effect. From 
an exception handling standpoint, the architecture can be viewed 
as being a sequential, non-pipelined design. 

To ensure that this happens, the processor only handles 
exceptions when the offending instruction is in the execute 
stage. Exceptions detected in the decode stage (such as the break 
instruction) are delayed until the execute stage. This allows any 
previous instructions to finish. The address of the offending 
instruction and the type of exception is stored in the 
coprocessor, and execution redirected to a hard-coded 
memory-address, where an exception handler resides.  The chip 
supports a subset of the R2000 exceptions. The exceptions 
Breakpoint, Syscall, Invalid Opcode, and FPU Unavailable are 
all detected in the instruction decode stage. Misaligned Load, 
Misaligned Store, and Arithmetic Overflow are all detected in 
the execute stage. Interrupts are treated like any other exception 
handled in the execute stage, only they come from an external 
input pin. 

Figure 2 shows the on-chip memory system.  Unlike the 
original R2000 implementations, which had no on-chip caches, 
we have two separate 512 byte on-chip caches for instructions 
and data.  The small size of these caches is due to constrained 
space on the die.  The cache is write-through, where the cache is 
never more up-to-date than memory.  By writing to a memory 
location, the corresponding cache line is invalidated.  Normally, 
the processor would have to stall and wait for the external 
memory to complete a write before continuing execution.  
Instead a four-entry write buffer is used to store words for 
writing to memory. If the memory location is later read before 
the write-buffer has finished, a cache miss will occur and the 
CPU will stall until all writes have occurred.  Data cache can 
read and write, but the instruction cache is read-only.  There is a 
shared external memory bus for instruction and data, and since a 
data cache miss in the memory stage will stall the fetch stage, 
the data cache is given precedence for memory access after the 
write buffer.  The physical caches can be swapped, so the 
instruction cache becomes the data cache and vice-versa.  This is 
helpful during cache initialization.  Data is cached when the 
memory address is between 0x8000 0000 to 0x9FFF FFFF 
and uncached when the memory address is between 
0xA000 0000 to 0xBFFF FFFF. 

Our MIPS implementation also includes a dedicated 
multiply/divide (multdiv) unit capable of multiplication and 
division on signed and unsigned integers.  It uses a radix-4 
Booth algorithm to multiply numbers and a successive shift-and-
subtract algorithm to divide them. Since this can take up to 32 
cycles, it is not desirable to stall the CPU during this operation. 
Instead the result is stored in two dedicated registers, prodh and 
prodl, representing the high and low 32-bits of a multiplication. 
A multiply or divide instruction will load the multdiv unit with 

the proper input values and start it, however execution will 
continue with the next instruction. The CPU only stalls for 
multdiv completion when prodh/prodl is read. A carefully 
written program can start a multiply, continue doing useful 
work, and only read the result when the computation is 
complete. 

 

 
 

Figure 2:  Block Diagram of On-Chip Memory System 
 
When two numbers are divided, the integer part of the 

quotient is stored in prodl and the remainder is stored in prodh. 
In signed division, the unit first computes the quotient and 
remainder of the magnitude of the inputs, then adjusts the result. 
The quotient is negated if the signs of the divisor and dividend 
disagree, and the sign of the remainder is set to the sign of the 
dividend. 
 
3  Schematics and Layout 

The schematics and layout were done in Electric, an open 
source VLSI CAD program developed by Steven Rubin of Sun 
Microsystems.  Electric is written in Java, and so is available for 
Linux, Mac, and Windows operating systems.  Electric provides 
verification tools, including design rule check, electrical rule 
check, and schematic/layout netlist check.  It has auto-route, 
auto-stitch, and mimic-stitch features to speed repetitive layouts, 
such as connecting a datapath. 

We developed a programmable logic array (PLA) ROM 
generator for the controller.  A PLA structure is an AND plane 
and an OR plane, used to compute sum of products functions.  
The PLAs generated by our software are read-only.  The PLA 
generator reads a Verilog case statement and outputs a 
corresponding Electric library file, including a schematic, 
layout, and symbol for the PLA.  The tool is written in Java and 
is freely released on the MIPS project website [4].   

To aid in layout, the team developed a standard cell library 
before starting on the processor layout.  The cell library contains 
257 cells of 57 types, such as a 2-input NAND or settable 
flip-flop with enable.  Most types come in a variety of transistor 
sizes, and some are optimized for use in the controller or 
datapath, by following different convention.  For example, the 
width of cells in the datapath can be reduced by accepting 
complemented inputs, such as clock for the flip-flops, instead of 
including an inverter within the cell.  Because the controller is 
mostly random logic, controller cells do not include 
complemented inputs.  Figure 3 shows the schematic and layout 
for a datapath flip-flop, with complimented “ph1” and “ph2” 
clock inputs.  In the layout, green is a diffusion layer, pink is 
polysilicon, and blue and purple are metal layers. 
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Figure 3:  Schematic and Layout of Datapath Flip-flop 
 
A preliminary floorplan was created immediately after the 

RTL was complete.  Our die was 4.5mm x 4.5mm in a 
0.5-micron process, but we designed for a 4mm x 4mm die size 
to leave padding for unanticipated routing.  This tested the 
feasibility of the design, and provided insight on size 
constraints.  Parts of the RTL were updated based on the 
preliminary floorplan, such as the cache size reducing from 2 kB 
to 512 bytes per cache.   

The class was split up into unit teams, of about five 
students each, responsible for different modules, such as 
datapath, controller, and cache system.  Within each team, 
blocks of the unit were assigned to different team members.  
Each member was responsible for creating a schematic from the 
RTL, calculating a floorplan for their block, and designing a 
layout.  Unit managers collected floorplans for individual blocks 
and assembled them into detailed unit floorplans.  Finally, the 
unit floorplans were assembled into a detailed floorplan shown 
in Figure 4.  Layouts were assembled analogously.  A 2-phase 
non-overlapping clock was used to eliminate hold time risks.  
The finished layout contains 160,000 transistors. 

 
 

Figure 4: MIPS Layout Floorplan 
 
4  Verification 

To aid in the incremental development of the processor, a 
set of ad-hoc tests were written along with the RTL. These tests 
consisted of several assembly language test programs that 
targeted specific MIPS instructions. A Verilog testbench runs 
each program through the simulated processor, allowing flaws to 
be easily traced to a specific subsystem. When possible, these 
tests were also run through SPIM, a free MIPS simulator, to 
ensure compatible behavior with existing MIPS 
implementations.  This was not possible to test non-standard 
exception conditions and interrupts, as these features are not 
implemented in SPIM. 

To verify the proper functionality of the processor in 
unexpected and corner cases, two random directed test 
generators were developed, one for the multiply/divide unit and 
one for the entire CPU. 

Due to the algorithmic complexity of the signed radix-4 
Booth multiply/divide unit, we decided to test the device as 
thoroughly as possible by using a random testvector generator. 
This generator picked input vectors from a set of known corner 
cases (negative and positive one, zero and the maximum and 
minimum signed numbers), and generated the expected output 
from standard integer multiplication and division. This testbench 
allowed us to identify a bug in the multdiv unit wherein the sign 
of the remainder of negative quotients was miscalculated.  This 
bug resulted from a misinterpretation of a signed integer 
division specification. It was caught because the testvector 
generator used an independently developed reference 
implementation of signed integer division which highlighted the 
inconsistency. 

The multdiv testbench generator was used as the basis for a 
much larger random code generator. Since the ad-hoc tests 
tested fewer than five hundred unique instruction words, the 
team created a directed random assembly generator as a 
black-box test. This allowed us to test a much larger number of 
possible combinations of instructions likely to appear in 
production code. The test creates assembly, with a mix of ALU, 
multiply/divide, and memory load/store operations divided into 
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blocks that are conditionally executed using the different branch 
types. The relative frequency of each instruction appearing can 
be controlled to isolate specific subunits of the CPU. This tester 
was not designed to explore the behavior of the CPU during 
exceptions, so the generated code is created to avoid possible 
overflows or divide by zeros. Branches are also constrained to 
jump forward to avoid infinite loops. The code generator is 
written in Python and is also freely available on the project 
website [4]. 

As the generator creates a block of code, it simulates the 
code to determine the resultant state of the CPU after execution. 
This uses a software implementation of the MIPS instruction set 
developed from published documentation to serve as an 
independent reference implementation. An arbitrary number of 
instructions may be generated and written to an assembly source 
file. The generated code terminates by XOR’ing the contents of 
the registers together. The final result of that XOR is predicted 
deterministically by the code generator, and verification is 
achieved by comparing the predicted output with the actual 
output, thus indicating consistency with the reference design. 

Electric’s design rule checker (DRC) and schematic/layout 
netlist checker (NCC) were used to verify the layout matched 
the schematic and did not have any geometrical errors.  We 
generated a transistor-level Verilog deck for the layout using 
Electric and simulated it in Modelsim against the RTL.  The 
team ran hundreds of thousands of randomly generated 
instructions through the RTL, and five thousand through the 
transistor-level schematic. Transistor-level simulation was very 
time consuming, with the simulated chip running at about 5 Hz, 
or 10 minutes to complete 3000 tests.  In all runs, the resultant 
state of the simulated design was consistent with the calculated 
result from the code generator. The large number of instructions 
executed minimized the probability of a wiring mistake on the 
chip or an improperly handled pipeline hazard, and the 
independently developed reference implementation minimized 
the probability of a specification error. 

Individual modules requiring more precise transistor sizing 
and timings, such as the SRAM bits for the caches, were 
simulated individually in IRSIM.  Additionally, a PLA was 
simulated in SPICE to verify the PLA generator’s correctness.  
The Adelaide team worked on verifying the final layout against 
the RTL using IRSIM.  IRSIM is a switch level simulator, 
treating each transistor as a switch, series resistor, and parallel 
capacitor to ground.  The RC circuit is a simplified model of 
transistor delay, known as the Elmore delay model of transistor 
delay. 

The ad-hoc tests were run against the RTL to generate a 
VCD, which describes the inputs and outputs that were asserted 
by the tests over time. This VCD was then parsed with a custom 
Perl script, changing the VCD format into an IRSIM command 
file.  During debugging the chip initially failed testing due to 
compiled C code tests jumping to random memory locations 
instead of entering an endless loop.  This put the simulation into 
an unknown state, because the memory locations were not 
initialized, and caused future to tests to experience errors.  

The tests were run and the chip passed simulation at a 
maximum clock frequency of 40 MHz, though the critical path 
was not determined.  This maximum frequency is a very rough 
estimate because of the simplified transistor model.  
 
 
 

5  System Tools 
Because we did not have a MIPS computer to test the chip 

with after fabrication, five students composed the systems team, 
which was responsible for designing a test system, creating a 
toolchain to compile code, and writing small test programs. 

A Xilinx FPGA development board was chosen to emulate 
memory, provide memory-mapped I/O devices, and generate a 
2-phase clock signal. Table I shows the memory map of the test 
setup.  Our test memory only maps the lower 17 bits to a 
physical address. Hence, the upper 15 bits are ignored by the 
external memory system. During reset the processor fetches the 
instruction at address 0xBFC0 0000, by convention, which 
maps to the physical address 0x000 0000.  The upper three 
bits of the address are used to bypass the cache in the chip, as 
mentioned in the previous section. 
 

TABLE I 
MEMORY MAP OF TEST SETUP 

 
Memory Range Description 
0x000 0000 Reset Vector 
0x000 0004 Exception Vector 
0x000 0100 to 
0x000 01FC Boot loader 

0x001 0200 to 
0x001 6A7C Program memory 

Instruction 
ROM 

0x001 6A80 to 
0x004 3FFC Data RAM 

0x004 4000  LED Array 
0x004 4004 to 
0x004 4010 DIP Switch 

0x004 4014 to 
0x004 4024 Push buttons 

0x004 4028 LCD Display 

I/O Devices 

 
The compiler toolchain we used was a modified version of 

GNU GCC 4.1.1, compiled by Professor James Stine at 
University of Oklahoma.  A small library of C routines was 
developed to use the toolchain.  Functions include setting LEDs, 
reading switches, and sending data to the LCD text display.  A 
small boot loader was also created to initialize the caches and 
stack pointer, and jump to the start of a program.  We did not 
implement any standard C libraries, such as stdlib.h or math.h. 

The system team also designed a PCB layout to mount the 
MIPS processor, provide regulated power, and interface with an 
FPGA development board.  The PCB and FPGA were tested by 
wiring the chip socket to an additional FPGA, programmed with 
synthesized RTL of the processor.  Test programs were run on 
this dual-FPGA setup and found to work. 
 
6  Fabrication and Testing 

Tapeout was done in Electric, which generated a CIF file 
appropriate for fabrication.  The chip was fabricated by MOSIS 
using an AMI 0.5 micron process, with a die size of 4.5 mm x 
4.5 mm, and packaged in a 108-pin pin grid array (PGA), 
measuring 1.2 inches on a side.  Figure 5 shows a 
photomicrograph of the fabricated chip.  

A photograph of our test setup, described in the last section, 
is shown in Figure 6.  The custom PCB on the left includes a 
2x20 LCD for text display and a reset button.  After no shorts 
between power and ground were found, and we were satisfied 
that the test setup was correct, the chip was placed in the socket 
on the test board. 
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Figure 5: Photomicrograph of Fabricated MIPS Chip 
 
The chip functioned perfectly on first silicon, though some 

errors were found in the test setup.  It passed all of the pre-
tapeout regression tests, successfully controlled LEDs, and 
played a simple “lights out” game written in C. 

 

 
 

Figure 6: Test Setup with FPGA Board 
 
We were able to run the processor at a maximum of 7.25 

MHz for the 2-phase clock, which we found to be limited by the 
cache.  Above 7.25 MHz the chip manifested erratic sporadic 
behavior, such as displaying random characters on the LCD 
during the “lights out” game, and eventually froze.  Though the 
simulated chip was able to operate at a higher clock speed, we 
believe these simulations were flawed because of simplified 
transistor models.  With the cache disabled, we were able to run 
some tests at 15 MHz.  At 7.25 MHz the power draw was 52 
milliwatts.  

In order to measure the performance of the chip against 
other similar MIPS processors, we used the Dhrystone 

benchmark program.  It runs a series of routines that test the 
string handling and integer arithmetic facilities of a processor.  
The results of the benchmark are reported in Dhrystones per 
second and normalized to the score of the VAX 11/780, a 1 
million instruction per second machine.  Here we report the 
VAX score (microseconds per Dhrystone cycle divided by 
1,757) and the DMIPS/MHz (VAX score divided by clock 
speed).  Though the Dhrystone benchmark is generally 
considered to be an inaccurate measure of system performance, 
we believe it is useful for measuring our chip’s rough 
performance against other R2000/R3000 chips.  Furthermore, 
the Dhrystone is an integer-only benchmark while many other 
benchmarking programs rely on a floating point unit, which our 
chip does not have. 

We were forced to modify the Dhyrstone source code 
because our test setup does not provide time information to the 
processor, and so it is impossible to measure the time Dhrystone 
takes to run.  We also modified the source code because of a 
limitation of our compiler toolchain, so that all of the functions 
called by main() were moved into the second of Dhyrstone’s 
two source code files.  This bends one of the rules of the 
Dhrystone benchmark [5] meant to make the compilation 
process more “real-world.”  We do not believe that this minor 
point affects our results. The Dhrystone benchmark was 
compiled using GCC 4.1.1 with default optimizations. 

Unlike a standard Dhrystone benchmark, we had to 
manually time the modified benchmark using a stopwatch.  We 
used twenty-five thousand runs of the Dhrystone main loop, 
which took about 13 seconds to complete.  The timing error 
introduced by human reaction time (roughly ±0.05 s) is 
considered to be the greatest source of timing error and 
constitutes a ±0.001 error in the reported VAX score and 
±0.0001 DMIPS/MHz error.  Benchmark results of the processor 
compared to other R2000 processors [6] is shown in Table II. 

Our fabricated chip achieved a VAX score of 1.1 DMIPS at 
7.25 MHz and 0.15 DMIPS/MHz, about six times slower than 
other R2000 processors.  Prior to chip fabrication we measured 
the performance of our processor in the dual-FPGA emulated 
test setup and found the DMIPS/Mhz to be identical to the 
fabricated chip.  

The Dhrystone benchmark also helped to validate 
functionality of the chip.  The program reports success or failure 
of Dhyrstone calculations on the LCD and LED array.  No 
incorrect calculations were reported by Dhrystone program 
during testing of the fabricated chip at 7.25 MHz. 

 
TABLE II 

COMPARISON OF DESIGN WITH SIMILAR R2000 PROCESSORS 
 

Processor Name 
Vax Score 
(DMIPS) 

Clock Speed 
(MHz) 

DMIPS 
/MHz 

HMC MIPS 
(cache disabled) 0.36 7.25 0.050 

HMC MIPS 1.08 7.25 0.150 
DECstation 2100 
R2000  11.193 12 0.93275 
SGI Personal Iris 
4D/20 R2000  9.812 12.5 0.78496 
SGI Personal Iris 
4D/20 R2000  9.799 12.5 0.78392 
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7  Conclusions 
A team of 34 undergraduates designed, fabricated, and 

tested a 32-bit MIPS processor compatible with the original 
R2000.  The design was completed as part of a semester-long 
CMOS VLSI course.  The layout includes 160,000 transistors on 
a 4.5 mm x 4.5 mm 0.5-micron die. The chip was fabricated, 
tested, and found to operate at a maximum 2-phase clock 
frequency of 7.25 MHz.  The finished chip was able to validate 
against the RTL, pass all benchmarks, and run a small “lights 
out” game. 
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