
1

A MIPS R2000 IMPLEMENTATION

Nathaniel Pinckney, Thomas Barr, Michael Dayringer, Matthew McKnett, Nan Jiang, Carl Nygaard,
Joel Stanley, David Money Harris, and Braden Phillips

Harvey Mudd College, Claremont, CA 91711, USA
The University of Adelaide, SA 5005, Australia

Email: npinckney@hmc.edu, tbarr@hmc.edu, mdayringer@hmc.edu, mmcknett@hmc.edu, njiang@hmc.edu,
cnygaard@hmc.edu, joel.stanley@adelaide.edu.au, David_Harris@hmc.edu, phillips@eleceng.adelaide.edu.au

ABSTRACT

Thirty-four undergraduates implemented a MIPS R2000
processor for an introductory CMOS VLSI design course. This
included designing a microarchitecture in Verilog, developing
custom PLA generation and ad-hoc random testing tools,
creating a standard cell library, schematics, layout, and PCB
test board. The processor was fabricated by MOSIS on an AMI
0.5-micron process, included 160,000 transistors, and ran at
7.25 MHz.
KEYWORDS: MIPS, RISC.

1 Introduction

MIPS is a family of 32-bit and 64-bit computer processors
used for many embedded applications, including network
routers, PDAs, and game consoles such as the Sony PlayStation
Portable. A MIPS processor is classified as a Reduced
Instruction Set Computer (RISC) processor, because of its small
number of instructions and addressing modes, in contrast to
Complex Instruction Set Computers (CISC), such as the Intel
x86 architecture. RISC favors less complexity to streamline
hardware implementation, relying on software optimization.
Examples of previous RISC processors include ARM, DEC
Alpha, and MIPS. Modern Intel and AMD x86 processors are
RISC-like, implementing RISC execution units and using
microcode to execute CISC instructions.

MIPS was originally invented as part of a Stanford research
project [1] and later brought to market by newly-started MIPS
Corporation in 1985, releasing the MIPS R2000 running at
8 MHz on 2.0 micron process. In 1988 the R3000 was released,
improving performance to eventually 40 MHz on a 1.2 micron
process. Both used approximately 110,000 transistors and
included cache controllers, which could use external memory
chips as processor cache. The R2000 supported 32 kB of data
cache and 64 kB of instruction cache. The R3000 doubled the
amount of data cache. Later revisions of the chip, including the
R4000, expanded the chip to 64-bit instructions and processing
[2].

As part of E158: Introduction to CMOS VLSI, thirty
undergraduates at Harvey Mudd College, advised by Professor
David Money Harris, and four students at the University of
Adelaide advised by Professor Braden Phillips, designed,
fabricated and tested an R2000-compatible MIPS processor in a
semester. Unlike the original R2000/R3000, the data and
instruction caches are on-chip. The project included a cell
library, logic design, schematics, custom layout, a compiler
chain, a test board, and custom tools. This project provided
hands-on VLSI experience and exposed students to working in a
large design team on a nontrivial problem.

2 MIPS Microarchitecture
At the beginning of the semester, four students quickly

designed and implemented logic for the microarchitecture, so
that the other students could begin work on schematics and
layout. The RTL was coded in Verilog and simulated in
Modelsim. More detailed information about the
microarchitecture and downloadable code is available on the
hmc-mips Google Code website [3] and is released as open
source under the MIT license agreement.

The MIPS architecture includes thirty-two general-purpose
32-bit registers and fifty-eight instructions, each 32 bits long.
Some R2000 processors have external floating-point units
(FPUs). Our design did not include support for an FPU.

Figure 1 shows a high-level block diagram of the processor.
The instructions are processed in a five-stage pipeline: fetch,
decode, execute, memory, and writeback. Instructions are read
from the instruction cache during the fetch stage, from the
memory address stored in the program counter (PC). During the
decode stage, data is read from the triple-ported register file and
the controller configures how the instruction will be manipulated
in each stage, by starting a state machine. Jumping or branching
may also occur in the decode stage. In the execute stage
arithmetic operations are performed and values are shifted.
Additionally, reads and write from the dedicated multiply/divide
unit are performed during this stage, as will be discussed later.
Data cache reads and writes are performed during the memory
stage. Finally, the writeback stage writes values to the register
file.

Figure 1: Block Diagram of MIPS Processor

Because jumps are processed during the decode stage, the

next instruction has already been read from memory by the fetch
stage. Instead of flushing the pipeline, the instruction is
processed. This is known as the “branch delay slot” and must be

2

considered by the compiler or assembly programmer. A hazard
detection unit in the controller detects when data is unavailable,
because of a cache miss or unprocessed instruction, and stalls
the CPU accordingly.

A coprocessor handles exceptions and holds configuration
bits. Only a few configuration bits are used for the R2000
architecture, and are mostly used to enable/disable exceptions
and to configure the caches. The MIPS architecture supports
exception handling and interrupts using so-called "precise
exceptions." This means that when an exception occurs, a single
instruction is labeled at-fault. Every instruction before the
offending instruction completes in its entirety and anything after
(as well as the offending instruction itself) has no effect. From
an exception handling standpoint, the architecture can be viewed
as being a sequential, non-pipelined design.

To ensure that this happens, the processor only handles
exceptions when the offending instruction is in the execute
stage. Exceptions detected in the decode stage (such as the break
instruction) are delayed until the execute stage. This allows any
previous instructions to finish. The address of the offending
instruction and the type of exception is stored in the
coprocessor, and execution redirected to a hard-coded
memory-address, where an exception handler resides. The chip
supports a subset of the R2000 exceptions. The exceptions
Breakpoint, Syscall, Invalid Opcode, and FPU Unavailable are
all detected in the instruction decode stage. Misaligned Load,
Misaligned Store, and Arithmetic Overflow are all detected in
the execute stage. Interrupts are treated like any other exception
handled in the execute stage, only they come from an external
input pin.

Figure 2 shows the on-chip memory system. Unlike the
original R2000 implementations, which had no on-chip caches,
we have two separate 512 byte on-chip caches for instructions
and data. The small size of these caches is due to constrained
space on the die. The cache is write-through, where the cache is
never more up-to-date than memory. By writing to a memory
location, the corresponding cache line is invalidated. Normally,
the processor would have to stall and wait for the external
memory to complete a write before continuing execution.
Instead a four-entry write buffer is used to store words for
writing to memory. If the memory location is later read before
the write-buffer has finished, a cache miss will occur and the
CPU will stall until all writes have occurred. Data cache can
read and write, but the instruction cache is read-only. There is a
shared external memory bus for instruction and data, and since a
data cache miss in the memory stage will stall the fetch stage,
the data cache is given precedence for memory access after the
write buffer. The physical caches can be swapped, so the
instruction cache becomes the data cache and vice-versa. This is
helpful during cache initialization. Data is cached when the
memory address is between 0x8000 0000 to 0x9FFF FFFF
and uncached when the memory address is between
0xA000 0000 to 0xBFFF FFFF.

Our MIPS implementation also includes a dedicated
multiply/divide (multdiv) unit capable of multiplication and
division on signed and unsigned integers. It uses a radix-4
Booth algorithm to multiply numbers and a successive shift-and-
subtract algorithm to divide them. Since this can take up to 32
cycles, it is not desirable to stall the CPU during this operation.
Instead the result is stored in two dedicated registers, prodh and
prodl, representing the high and low 32-bits of a multiplication.
A multiply or divide instruction will load the multdiv unit with

the proper input values and start it, however execution will
continue with the next instruction. The CPU only stalls for
multdiv completion when prodh/prodl is read. A carefully
written program can start a multiply, continue doing useful
work, and only read the result when the computation is
complete.

Figure 2: Block Diagram of On-Chip Memory System

When two numbers are divided, the integer part of the

quotient is stored in prodl and the remainder is stored in prodh.
In signed division, the unit first computes the quotient and
remainder of the magnitude of the inputs, then adjusts the result.
The quotient is negated if the signs of the divisor and dividend
disagree, and the sign of the remainder is set to the sign of the
dividend.

3 Schematics and Layout

The schematics and layout were done in Electric, an open
source VLSI CAD program developed by Steven Rubin of Sun
Microsystems. Electric is written in Java, and so is available for
Linux, Mac, and Windows operating systems. Electric provides
verification tools, including design rule check, electrical rule
check, and schematic/layout netlist check. It has auto-route,
auto-stitch, and mimic-stitch features to speed repetitive layouts,
such as connecting a datapath.

We developed a programmable logic array (PLA) ROM
generator for the controller. A PLA structure is an AND plane
and an OR plane, used to compute sum of products functions.
The PLAs generated by our software are read-only. The PLA
generator reads a Verilog case statement and outputs a
corresponding Electric library file, including a schematic,
layout, and symbol for the PLA. The tool is written in Java and
is freely released on the MIPS project website [4].

To aid in layout, the team developed a standard cell library
before starting on the processor layout. The cell library contains
257 cells of 57 types, such as a 2-input NAND or settable
flip-flop with enable. Most types come in a variety of transistor
sizes, and some are optimized for use in the controller or
datapath, by following different convention. For example, the
width of cells in the datapath can be reduced by accepting
complemented inputs, such as clock for the flip-flops, instead of
including an inverter within the cell. Because the controller is
mostly random logic, controller cells do not include
complemented inputs. Figure 3 shows the schematic and layout
for a datapath flip-flop, with complimented “ph1” and “ph2”
clock inputs. In the layout, green is a diffusion layer, pink is
polysilicon, and blue and purple are metal layers.

3

Figure 3: Schematic and Layout of Datapath Flip-flop

A preliminary floorplan was created immediately after the

RTL was complete. Our die was 4.5mm x 4.5mm in a
0.5-micron process, but we designed for a 4mm x 4mm die size
to leave padding for unanticipated routing. This tested the
feasibility of the design, and provided insight on size
constraints. Parts of the RTL were updated based on the
preliminary floorplan, such as the cache size reducing from 2 kB
to 512 bytes per cache.

The class was split up into unit teams, of about five
students each, responsible for different modules, such as
datapath, controller, and cache system. Within each team,
blocks of the unit were assigned to different team members.
Each member was responsible for creating a schematic from the
RTL, calculating a floorplan for their block, and designing a
layout. Unit managers collected floorplans for individual blocks
and assembled them into detailed unit floorplans. Finally, the
unit floorplans were assembled into a detailed floorplan shown
in Figure 4. Layouts were assembled analogously. A 2-phase
non-overlapping clock was used to eliminate hold time risks.
The finished layout contains 160,000 transistors.

Figure 4: MIPS Layout Floorplan

4 Verification

To aid in the incremental development of the processor, a
set of ad-hoc tests were written along with the RTL. These tests
consisted of several assembly language test programs that
targeted specific MIPS instructions. A Verilog testbench runs
each program through the simulated processor, allowing flaws to
be easily traced to a specific subsystem. When possible, these
tests were also run through SPIM, a free MIPS simulator, to
ensure compatible behavior with existing MIPS
implementations. This was not possible to test non-standard
exception conditions and interrupts, as these features are not
implemented in SPIM.

To verify the proper functionality of the processor in
unexpected and corner cases, two random directed test
generators were developed, one for the multiply/divide unit and
one for the entire CPU.

Due to the algorithmic complexity of the signed radix-4
Booth multiply/divide unit, we decided to test the device as
thoroughly as possible by using a random testvector generator.
This generator picked input vectors from a set of known corner
cases (negative and positive one, zero and the maximum and
minimum signed numbers), and generated the expected output
from standard integer multiplication and division. This testbench
allowed us to identify a bug in the multdiv unit wherein the sign
of the remainder of negative quotients was miscalculated. This
bug resulted from a misinterpretation of a signed integer
division specification. It was caught because the testvector
generator used an independently developed reference
implementation of signed integer division which highlighted the
inconsistency.

The multdiv testbench generator was used as the basis for a
much larger random code generator. Since the ad-hoc tests
tested fewer than five hundred unique instruction words, the
team created a directed random assembly generator as a
black-box test. This allowed us to test a much larger number of
possible combinations of instructions likely to appear in
production code. The test creates assembly, with a mix of ALU,
multiply/divide, and memory load/store operations divided into

4

blocks that are conditionally executed using the different branch
types. The relative frequency of each instruction appearing can
be controlled to isolate specific subunits of the CPU. This tester
was not designed to explore the behavior of the CPU during
exceptions, so the generated code is created to avoid possible
overflows or divide by zeros. Branches are also constrained to
jump forward to avoid infinite loops. The code generator is
written in Python and is also freely available on the project
website [4].

As the generator creates a block of code, it simulates the
code to determine the resultant state of the CPU after execution.
This uses a software implementation of the MIPS instruction set
developed from published documentation to serve as an
independent reference implementation. An arbitrary number of
instructions may be generated and written to an assembly source
file. The generated code terminates by XOR’ing the contents of
the registers together. The final result of that XOR is predicted
deterministically by the code generator, and verification is
achieved by comparing the predicted output with the actual
output, thus indicating consistency with the reference design.

Electric’s design rule checker (DRC) and schematic/layout
netlist checker (NCC) were used to verify the layout matched
the schematic and did not have any geometrical errors. We
generated a transistor-level Verilog deck for the layout using
Electric and simulated it in Modelsim against the RTL. The
team ran hundreds of thousands of randomly generated
instructions through the RTL, and five thousand through the
transistor-level schematic. Transistor-level simulation was very
time consuming, with the simulated chip running at about 5 Hz,
or 10 minutes to complete 3000 tests. In all runs, the resultant
state of the simulated design was consistent with the calculated
result from the code generator. The large number of instructions
executed minimized the probability of a wiring mistake on the
chip or an improperly handled pipeline hazard, and the
independently developed reference implementation minimized
the probability of a specification error.

Individual modules requiring more precise transistor sizing
and timings, such as the SRAM bits for the caches, were
simulated individually in IRSIM. Additionally, a PLA was
simulated in SPICE to verify the PLA generator’s correctness.
The Adelaide team worked on verifying the final layout against
the RTL using IRSIM. IRSIM is a switch level simulator,
treating each transistor as a switch, series resistor, and parallel
capacitor to ground. The RC circuit is a simplified model of
transistor delay, known as the Elmore delay model of transistor
delay.

The ad-hoc tests were run against the RTL to generate a
VCD, which describes the inputs and outputs that were asserted
by the tests over time. This VCD was then parsed with a custom
Perl script, changing the VCD format into an IRSIM command
file. During debugging the chip initially failed testing due to
compiled C code tests jumping to random memory locations
instead of entering an endless loop. This put the simulation into
an unknown state, because the memory locations were not
initialized, and caused future to tests to experience errors.

The tests were run and the chip passed simulation at a
maximum clock frequency of 40 MHz, though the critical path
was not determined. This maximum frequency is a very rough
estimate because of the simplified transistor model.

5 System Tools
Because we did not have a MIPS computer to test the chip

with after fabrication, five students composed the systems team,
which was responsible for designing a test system, creating a
toolchain to compile code, and writing small test programs.

A Xilinx FPGA development board was chosen to emulate
memory, provide memory-mapped I/O devices, and generate a
2-phase clock signal. Table I shows the memory map of the test
setup. Our test memory only maps the lower 17 bits to a
physical address. Hence, the upper 15 bits are ignored by the
external memory system. During reset the processor fetches the
instruction at address 0xBFC0 0000, by convention, which
maps to the physical address 0x000 0000. The upper three
bits of the address are used to bypass the cache in the chip, as
mentioned in the previous section.

TABLE I
MEMORY MAP OF TEST SETUP

Memory Range Description
0x000 0000 Reset Vector
0x000 0004 Exception Vector
0x000 0100 to
0x000 01FC Boot loader

0x001 0200 to
0x001 6A7C Program memory

Instruction
ROM

0x001 6A80 to
0x004 3FFC Data RAM

0x004 4000 LED Array
0x004 4004 to
0x004 4010 DIP Switch

0x004 4014 to
0x004 4024 Push buttons

0x004 4028 LCD Display

I/O Devices

The compiler toolchain we used was a modified version of

GNU GCC 4.1.1, compiled by Professor James Stine at
University of Oklahoma. A small library of C routines was
developed to use the toolchain. Functions include setting LEDs,
reading switches, and sending data to the LCD text display. A
small boot loader was also created to initialize the caches and
stack pointer, and jump to the start of a program. We did not
implement any standard C libraries, such as stdlib.h or math.h.

The system team also designed a PCB layout to mount the
MIPS processor, provide regulated power, and interface with an
FPGA development board. The PCB and FPGA were tested by
wiring the chip socket to an additional FPGA, programmed with
synthesized RTL of the processor. Test programs were run on
this dual-FPGA setup and found to work.

6 Fabrication and Testing

Tapeout was done in Electric, which generated a CIF file
appropriate for fabrication. The chip was fabricated by MOSIS
using an AMI 0.5 micron process, with a die size of 4.5 mm x
4.5 mm, and packaged in a 108-pin pin grid array (PGA),
measuring 1.2 inches on a side. Figure 5 shows a
photomicrograph of the fabricated chip.

A photograph of our test setup, described in the last section,
is shown in Figure 6. The custom PCB on the left includes a
2x20 LCD for text display and a reset button. After no shorts
between power and ground were found, and we were satisfied
that the test setup was correct, the chip was placed in the socket
on the test board.

5

Figure 5: Photomicrograph of Fabricated MIPS Chip

The chip functioned perfectly on first silicon, though some

errors were found in the test setup. It passed all of the pre-
tapeout regression tests, successfully controlled LEDs, and
played a simple “lights out” game written in C.

Figure 6: Test Setup with FPGA Board

We were able to run the processor at a maximum of 7.25

MHz for the 2-phase clock, which we found to be limited by the
cache. Above 7.25 MHz the chip manifested erratic sporadic
behavior, such as displaying random characters on the LCD
during the “lights out” game, and eventually froze. Though the
simulated chip was able to operate at a higher clock speed, we
believe these simulations were flawed because of simplified
transistor models. With the cache disabled, we were able to run
some tests at 15 MHz. At 7.25 MHz the power draw was 52
milliwatts.

In order to measure the performance of the chip against
other similar MIPS processors, we used the Dhrystone

benchmark program. It runs a series of routines that test the
string handling and integer arithmetic facilities of a processor.
The results of the benchmark are reported in Dhrystones per
second and normalized to the score of the VAX 11/780, a 1
million instruction per second machine. Here we report the
VAX score (microseconds per Dhrystone cycle divided by
1,757) and the DMIPS/MHz (VAX score divided by clock
speed). Though the Dhrystone benchmark is generally
considered to be an inaccurate measure of system performance,
we believe it is useful for measuring our chip’s rough
performance against other R2000/R3000 chips. Furthermore,
the Dhrystone is an integer-only benchmark while many other
benchmarking programs rely on a floating point unit, which our
chip does not have.

We were forced to modify the Dhyrstone source code
because our test setup does not provide time information to the
processor, and so it is impossible to measure the time Dhrystone
takes to run. We also modified the source code because of a
limitation of our compiler toolchain, so that all of the functions
called by main() were moved into the second of Dhyrstone’s
two source code files. This bends one of the rules of the
Dhrystone benchmark [5] meant to make the compilation
process more “real-world.” We do not believe that this minor
point affects our results. The Dhrystone benchmark was
compiled using GCC 4.1.1 with default optimizations.

Unlike a standard Dhrystone benchmark, we had to
manually time the modified benchmark using a stopwatch. We
used twenty-five thousand runs of the Dhrystone main loop,
which took about 13 seconds to complete. The timing error
introduced by human reaction time (roughly ±0.05 s) is
considered to be the greatest source of timing error and
constitutes a ±0.001 error in the reported VAX score and
±0.0001 DMIPS/MHz error. Benchmark results of the processor
compared to other R2000 processors [6] is shown in Table II.

Our fabricated chip achieved a VAX score of 1.1 DMIPS at
7.25 MHz and 0.15 DMIPS/MHz, about six times slower than
other R2000 processors. Prior to chip fabrication we measured
the performance of our processor in the dual-FPGA emulated
test setup and found the DMIPS/Mhz to be identical to the
fabricated chip.

The Dhrystone benchmark also helped to validate
functionality of the chip. The program reports success or failure
of Dhyrstone calculations on the LCD and LED array. No
incorrect calculations were reported by Dhrystone program
during testing of the fabricated chip at 7.25 MHz.

TABLE II

COMPARISON OF DESIGN WITH SIMILAR R2000 PROCESSORS

Processor Name
Vax Score
(DMIPS)

Clock Speed
(MHz)

DMIPS
/MHz

HMC MIPS
(cache disabled) 0.36 7.25 0.050

HMC MIPS 1.08 7.25 0.150
DECstation 2100
R2000 11.193 12 0.93275
SGI Personal Iris
4D/20 R2000 9.812 12.5 0.78496
SGI Personal Iris
4D/20 R2000 9.799 12.5 0.78392

6

7 Conclusions
A team of 34 undergraduates designed, fabricated, and

tested a 32-bit MIPS processor compatible with the original
R2000. The design was completed as part of a semester-long
CMOS VLSI course. The layout includes 160,000 transistors on
a 4.5 mm x 4.5 mm 0.5-micron die. The chip was fabricated,
tested, and found to operate at a maximum 2-phase clock
frequency of 7.25 MHz. The finished chip was able to validate
against the RTL, pass all benchmarks, and run a small “lights
out” game.

ACKNOWLEDGEMENT

The authors would like to thank the developers of Electric,
especially Steven Rubin, for producing a great CAD software
package. Sun Microsystems for supporting Electric
development. MOSIS for subsidizing chip fabrication.
Professor James Stine at University of Oklahoma for his
modified version of GCC. Lastly, the authors thank all of the
students who participated in the project, at Harvey Mudd
College and University of Adelaide.

REFERENCES
[1] M. Horowitz, et. al., “MIPS-X: a 20-MIPS peak, 32-bit

microprocessor,” IEEE Journal of Solid-State Circuits,
vol. 22, no. 5, pp. 790-799, Oct. 1987.

[2] D. Sweetman, See MIPS Run, San Diego: Academic Press,
2002.

[3] “Google Code hmc-mips,”
http://code.google.com/p/hmc-mips/

[4] “E158 CMOS VLSI Design Spring 2007 MIPS Project,”
http://www4.hmc.edu:8001/Engineering/158/07/project/

[5] A. Weiss, “Dhrystone Benchmark: History, Analysis,
`Scores,’ and Recommendations White Paper,” Nov. 2002,
http://www.synchromeshcomputing.com/pdf/dhrystoneWhi
tePaper.pdf

[6] D. Grevenstein, “Dhyrstone Benchmark Results,”
http://sites.inka.de/pcde/dbp/dhrystone.html

Nathaniel Pinckney is a 2006-2008 Clay-Wolkin fellow and
senior engineering major at Harvey Mudd College specializing
in VLSI design and embedded system. He served as the
memory microarchitect for the MIPS project. He is currently
researching cryptographic hardware accelerators and plans to
pursue a Ph.D. in electrical engineering after graduation.

Thomas Barr is a senior at Harvey Mudd College, and a Clay-
Wolkin fellow for 2007-2008. He works for The Aerospace
Corporation in High-Performance Computing research, and
intends to pursue a Ph.D. after graduation. He was the
Exception Microarchitect for the MIPS project.

Michael Dayringer is a senior engineer major at Harvey Mudd
College. His interests are in VLSI and computer architecture
and he intends to pursue a master’s degree after graduation. He
was part of the memory team for the MIPS project.

Matt McKnett is a senior computer science major at Harvey
Mudd College. He is focusing on Computer Graphics and User
Interface Design and will go into industry after graduation. He
was co-manager of the systems team for the MIPS project, in
charge of compiler toolchain setup, and developing the demo
and benchmarking programs.

Nan Jiang graduated Harvey Mudd College in 2007 and is now
a Ph.D. student at Stanford University. His research interests
are in computer architecture and VLSI. During the MIPS
project he served as Chief Circuit Designer.

Carl Nygaard graduated from Harvey Mudd in 2007 in
Computer Science and now works in Google's Kirkland office as
a Software Engineer in Test. He served as the Chief
Microarchitect.

Joel Stanley is a computer systems Bachelor of Engineer and
Bachelor of Economics final year student, from the University
of Adelaide, South Australia. Since then, he has been working
for the One Laptop per Child project, both as an intern at their
office on MIT's campus, and as a Google Summer of Code
participant in Australia. He worked with the Adelaide team, in
collaboration with HMC, on the cache subsystem and
verification of the final chip layout before tapeout.

David Money Harris is an Associate Professor of Engineering
at Harvey Mudd College. David received his Ph.D. from
Stanford University in 1999 and his S.B. and M. Eng. degrees
from MIT in 1994. His research interests include high speed
CMOS VLSI design and computer arithmetic. He is the author
of CMOS VLSI Design: A Circuits and Systems Perspective,
Logical Effort, and Skew-Tolerant Circuit Design. He holds
twelve patents, has written numerous papers, and has designed
chips at Sun Microsystems, Intel, Hewlett-Packard, and Evans &
Sutherland. When he is not teaching or building chips, David
enjoys hiking with his family.

Braden Phillips is a lecturer in the School of Electrical and
Electronic Engineering at the University of Adelaide. Prior to
the completion of his PhD thesis, `An Optimised
Implementation of Public Key Cryptography for Smart Card
Processors’, Braden worked as a process control engineer and
was a founding partner in Current Dynamics, an electronic
hardware design venture. In September 2000 he took up a
lecturing position at Cardiff University in South Wales, a post
he held for 2 years before returning to Adelaide. Braden’s
research interests include digital arithmetic, digital
microelectronics, computer architecture, real time systems and
information security.

