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ABSTRACT 
This paper describes a parallelized radix-4 scalable Montgomery 
multiplier implementation.  The design does not require hardware 
multipliers, and uses parallelized multiplication to shorten the 
critical path. By left-shifting the sources rather than right-shifting 
the result, the latency between processing elements is shortened 
from two cycles to nearly one.  The new design can perform 
1024-bit modular exponentiation in 8.7 ms and 256-bit 
exponentiation in 0.36 ms using 5916 Virtex2 4-input lookup 
tables.  This is comparable to radix-2 for long multiplies and 
nearly twice as fast for short ones. 
 
Categories and Subject Descriptors 
B.2.4 [Arithmetic and Logic Structures]: High-Speed 
Arithmetic – algorithms, cost/performance.  
 
General Terms 
Algorithms, Design, Performance. 
 
Keywords 
Cryptography, RSA, Montgomery Multiplication. 

1. INTRODUCTION 
Public key encryption schemes, including RSA, use modular 
exponentiation of large numbers to encrypt data.  This is secure 
because factoring large numbers is computationally intensive and 
becomes intractable for very large numbers.  But, modular 
exponentiation of large numbers is slow because of repeated 
modular multiplications with division steps to calculate the 
remainder.    Montgomery multipliers [1] are useful because they 
will perform modular multiplication of Montgomery residues 
without the need of a division step.  Hence, they can dramatically 
increase the speed of encryption systems. 
 
Older Montgomery multipliers are hard-wired to support a 
particular operand length, .  Scalable Montgomery multipliers 
reuse -bit processing elements (PEs) many times to handle the 
entire -bit operands, making them suitable to arbitrary-length 
operands [2].  Previous scalable Montgomery multiplier designs 

include radix-2 [3, 2], radix-4 [4], radix-8 [5], radix-16 [6], and 
very high radix [7, 8].  A scalable radix-  design processes  bits 
of the multiplier and  bits of multiplicand per step.  The scalable 
very high radix designs commonly use dedicated  
hardware multipliers.  These multipliers are efficient on FPGAs 
containing high-speed multipliers, but may be undesirable for 
application-specific integrated circuits. 
 
Conventional scalable Montgomery multipliers right-shift the 
result after each PE.  This leads to two-cycle latency between PEs.  
By left-shifting the operands rather than right-shifting the result, 
the latency can be reduced to nearly one cycle at the expense of a 
small increase in the number of iterations through the PEs [3]. 
 
The critical path through a PE can be shortened by reordering the 
steps of the Montgomery multiplication algorithm, which 
parallelizes multiplications within the PE [9, 7, 6]. 
 
This paper describes a novel radix-4 Montgomery multiplier 
design that left-shifts operands and parallelizes multiplications 
within the PE.  For short operands the multiplier is nearly twice as 
fast as radix-2 designs and for long operands it is comparable.  

2. MONTGOMERY MULTIPLICATION 
Montgomery multiplication is defined as 

Z = (XYR-1) mod M 
where 

X: n-bit multiplier 
Y: n-bit multiplicand 
M: n-bit odd modulus, typically prime 

:  
: modular multiplicative inverse of R 

 ( ) mod M = 1 
 
The steps of Montgomery multiplication are shown in Figure 1.  
Because , dividing by  is equivalent to shifting right by  
bits.   has the property that the lower  bits of  
are 0.  Hence, no information is lost during the reduction step. 
 

Multiply:    =  
Reduce:    =   
    =  
Normalize:   If Z ≥ M then –  

Figure 1. Montgomery multiplication algorithm 
 

The algorithm involves three dependent multiplications.  Orup 
showed that it can be sped up by reordering steps and doing a 
precomputation, to eliminate one of the multiplications and to 
allow the other two to occur in parallel [9].  
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Note that we can also skip the normalization step for successive 
Montgomery multiplications because if  and 
 ,  then  [9, 10, 11, 12].  To do this we 
increased the size of the operands to  bits and let 

where . 

2.1 Parallelized Radix-4 Scalable Design 
The parallelized radix-4 scalable algorithm is a hybrid of two 
previous Montgomery multiplier designs: the improved unified 
scalable radix-2 design [3] and the parallelized very high radix 
scalable design [7].  Figure 2 shows the parallelized radix-4 
scalable algorithm derived by [9, 7].  Parallel radix  algorithms 
require extending the operands by another  bits, so  
for radix 4. R also increases by . The variables are defined 
below. 

:  
:  
: -bit odd modulus 
: -bit integer satisfying  
: -bit integer  

:  bit multiplicand 
:  bit multiplier 
: 3-bit carry 
 scalable inner word length 

: outer loop length  

 inner loop length  
 

 = 0 
for i = 0 to  
 =  mod  
  = 0 
 for  to e – 1 
  ( , ) = ( , ) + C +  +  

Figure 2. Parallelized radix-4 scalable Montgomery algorithm 
 
The precomputed  is used so that no multiplication is needed to 
calculate .  The algorithm is scalable because it iterates over 
words of the operands using fixed-sized PEs.  The superscripts 
denote -bit words for  and -bit words for , , and . There 

are  -bit words of , , and Z, and  2-bit 
words of  in a radix-4 design with -bit PEs. 

3. HARDWARE IMPLEMENTATION 
As Tenca proposed [2], the Montgomery multiplier is built from a 
systolic array of  processing elements (PEs), as shown in 
Figure 3. The architecture includes memories for , , and , a 
FIFO to store partial words of  and , and a sequence controller.  
The memory also holds precomputed  and  values for 
multiplications within the PEs.  A FIFO holds results of the last 
PE until the first PE has completed processing the current 
operands.  The FIFO has a latency of  (typically 1) cycles.  Bold 
lines in the figure indicate variables in carry-save redundant form. 
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Figure 3. Scalable Montgomery multiplier architecture 

 

3.1 Processing Elements 
The parallelized radix-4 processing element design is shown in 
Figure 4.  Each PE receives a different 2-bit word of X, so each 
PE is assigned a different iteration of the outer loop of the radix-4 
algorithm.  For a kernel with  PEs,  pipeline cycles are 
needed to process all of .  The PEs also receive w bits of Y, , Z 
in each clock cycle.  Hence each PE requires  cycles to process 
all the iterations of the inner loop.  
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Figure 4. Parallelized Radix-4 scalable Montgomery multiplier processing element 
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In one pipeline cycle, 2p bits of X are processed.  Unlike a 
previous design [7], we ensure that the final result is always taken 
from the last PE in the kernel to simplify the hardware design. For 
this to be true, , where  is an integer number 
of pipeline cycles.   
 
Each PE contains two multiplexers, four 3:2 CSAs, datapath 
registers (with control signals), and a feedback register for the 
carry between iterations of the inner loop.   and  are 
represented in carry-save redundant form for speed.  Because the 
CSAs do not have identical length operands, they are optimized 
into combinations of half adders and full adders to reduce the 
amount of hardware.  Recall that  and  can range from 0 to 3 
for radix-4.  It is trivial to compute  or  when 
either multiplier is 2, because and  shift left by 1 bit.  
Likewise, when the multiplier is 0 or 1 the product is also trivial.  
When the multiplier is 3, computing the product in real-time 
would be costly.  Instead of including multipliers in the PEs, 
precomputed  and  are stored in the memory and bussed to 
each PE, where multiplexers are used to select the product.  The 
drawback of this is extra registers are added to accommodate  
and  in the PE.  Since  is stored in redundant form, it must 
first be converted to non-redundant form, using an XOR, to select 
the appropriate multiple of .  The multiplexer select lines drive a 
fanout of , so they must be buffered for adequate drive. 

   
The PE shifts  and  left by two bits instead of  right by two 
after each step.  This reduces cycle latency of the PE from two 
cycles to a single cycle by removing the dependence on the lower 
bits of the next  word [3].  As with previous designs, the PE 

is pipelined for single-cycle throughput.  Every  steps the 
lowest word of  is discarded because it is not in the final result.  
To simplify implementation, a word is discarded between pipeline 
cycles.  Hence, our design requires that  must be divisible by 

. 
 
So that  and  are constant for an entire pipeline cycle, xptr is 
asserted at the start of a pipeline cycle, to enable the  and  
registers.  A shift register, outside of the PE, sequentially asserts 
PE xptrs as words transverse through the kernel. 

 
For conventional Montgomery multiplications using  instead of 

, the discarded word is all zeros.  However, in the parallel 
version, the word is usually non-zero.  Since the result is stored in 
redundant form, conversion to non-redundant form could produce 
a carry-out.  Logic in the FIFO calculates a carry from the 
discarded word and outputs to the first PE’s lswcarry, which is 
added to the first word of the pipeline cycle.  Instead of 
propagating a carry between PEs through lswcarry, the discarded 
word is processed an extra cycle so that the CSAs can propagate a 
carry within the PE. 

3.2 Latencies 
A hardware pipeline diagram of the radix-4 design is shown in 
Figure 5.  The diagram assumes the minimum FIFO cycle latency 

.  Each PE completes a pipeline cycle in  cycles plus an 
additional cycle to handle overflow because  is not shifted right 
after each step. 
 

PE 1 PE 2 PE 3 PE 4Cycle #

1

2

3

4

5

6

7

8

9

10

11

Y
Z

w-3:-2

w-3:-2

Y
Z

2w-3:w-2

2w-3:w-2

Y
Z

3w-3:2w-2

3w-3:2w-2

Y
Z

4w-3:3w-2

4w-3:3w-2

X
1:0

X
1:0

X
1:0

X
1:0

Y
Z

w-5:-4

w-5:-4

Y
Z

2w-5:w-4

2w-5:w-4

Y
Z

3w-5:2w-4

3w-5:2w-4

Y
Z

4w-5:3w-4

4w-5:3w-4

X
3:2

X
3:2

X
3:2

X
3:2

Y
Z

w-7:-6

w-7:-6

Y
Z

2w-7:w-6

2w-7:w-6

Y
Z

3w-7:2w-6

3w-7:2w-6

Y
Z

4w-7:3w-6

4w-7:3w-6

X
5:4

X
5:4

X
5:4

X
5:4

Y
Z

w-9:-8

w-9:-8

Y
Z

2w-9:w-8

2w-9:w-8

Y
Z

3w-9:2w-8

3w-9:2w-8

Y
Z

4w-9:3w-8

4w-9:3w-8

X
7:6

X
7:6

X
7:6

X
7:6

Y
Z

w-11:-10

w-11:-10

Y
Z

2w-11:w-10

2w-11:w-10

Y
Z

3w-11:2w-10

3w-11:2w-10

Y
Z

4w-11:3w-10

4w-11:3w-10

X
9:8

X
9:8

X
9:8

X
9:8

Y
Z

w-13:-12

w-13:-12

Y
Z

2w-13:w-12

2w-13:w-12

Y
Z

3w-13:2w-12

3w-13:2w-12

Y
Z

4w-13:3w-12

4w-13:3w-12

X
11:10

X
11:10

X
11:10

X
11:10

PE 1 PE 2Cycle #

1

2

3

4

5

6

7

8

9

10

11

Y
Z

w-5:-4

w-5:-4

Y
Z

2w-5:w-4

2w-5:w-4

Y
Z

3w-5:2w-4

3w-5:2w-4

Y
Z

4w-5:3w-4

4w-5:3w-4

X
3:2

X
3:2

X
3:2

X
3:2Y

Z
w-7:-6

w-7:-6

Y
Z

2w-7:w-6

2w-7:w-6

Y
Z

3w-7:2w-6

3w-7:2w-6

Y
Z

4w-7:3w-6

4w-7:3w-6

X
5:4

X
5:4

X
5:4

X
5:4

Y
Z

w-9:-8

w-9:-8

Y
Z

2w-9:w-8

2w-9:w-8

Y
Z

3w-9:2w-8

3w-9:2w-8

Y
Z

4w-9:3w-8

4w-9:3w-8

X
7:6

X
7:6

X
7:6

X
7:6

Y
Z

w-3:-2

w-3:-2

Y
Z

2w-3:w-2

2w-3:w-2

Y
Z

3w-3:2w-2

3w-3:2w-2

Y
Z

4w-3:3w-2

4w-3:3w-2

X
1:0

X
1:0

X
1:0

X
1:0

Stall

 
Figure 5. Hardware pipeline diagram for  = 3.   = 2 (Case I, left) and  = 4 (Case II, right) 
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There are two cases for the time between pipeline cycles.  Case I 
occurs when the PEs are used continuously and is  cycles 
per pipeline cycle.  Case II occurs when the first PE must wait for 
the result from the last PE.  For the first word to transverse 
through all of the PEs,  cycles are needed, where  is the cycle 
latency between PEs (1 in this design).  An additional  are 
needed to handle discarded words of  as  and  are shifted.  
Lastly, an extra  cycles are needed due to latency through the 
FIFO.  Therefore, Case II is  cycles per pipeline 
cycle.  The figure is simplified to not show  extra cycles for 
Case II.   
 
Because  pipeline cycles are needed to process all bits of , 

 total cycles are needed in Case I for Montgomery 
multiplication.  Let  denote the clock cycle period.  The total 
time for Montgomery multiplication is then 

 
   for  

 
In Case II,  total cycles are needed for 
Montgomery multiplication.  Hence, the total Montgomery 
multiplication time is 

 
   for  

 

Let  be a metric for the amount of hardware in the 
multiplier.  We can rewrite the above delays in terms of the design 
parameters , , , , , and , and the low order terms can be 
dropped, so that the approximate number of cycles is 
 

  for  

 for  
 

Hence, for Case I the time required for Montgomery 
multiplication decreases linearly with amount of hardware in the 
multiplier.  For Case II, where operand lengths are short compared 
to the hardware available, the time does not change with the 
amount of hardware. 

4. RESULTS 
The processing elements were coded in Verilog and simulated in 
ModelSim.  Verilog for the parallelized radix-4 design, along with 
previous Montgomery multiplier designs, has been synthesized in 
Synplify Pro onto the Xilinx XC2V2000-6 Virtex II FPGA with 
“Sequential Optimizations” disabled to prevent flip-flops from 
being optimized into shift registers.  A comparison of the 
parallelized scalable radix-4 design with other Montgomery 
multiplier designs is shown in Table 1.  The critical path for the 
radix-4 design is a multiplexer, a buffer, two CSAs, and a register, 
which limits the speed to 266 Mhz for w = 16. 

 
Table 1. Comparison of FPGA resource usage and clock speed 

 
Architecture Reference w v 4-input 

LUTs / 
PE 

Registers 
/ PE 

16 x 16 
Mults / 
PE 

Critical Path Clock 
Speed 
(Mhz) 

Parallel radix-4 scalable This work 4 2 55 46  0                2CSA + BUF + MUX + REG  271 
8 2 106 70 0 266 
16 2 187 121 0 266 

Parallel  
radix-216 scalable 

[7] 16 16 130 147 2 MUL + CSA   + CPA                 + REG 106 

Radix-216 

Scalable 
[8] 16 16 146 247 2 MUL               + CPA + MUX   + REG 106 

Parallel radix-2 scalable [13] 16 1 94 72 0 AND  + 2CSA  + BUF              + REG 403 
Improved  
radix-2 scalable 

[3] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285 

Tenca-Koç 
radix-2 scalable 

[2] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285 

 
 

A comparison of hardware usage and exponentiation time for the 
parallelized radix-4 design with others is shown in Table 2.  The 
data includes the hardware in the PEs and controller, but not the 
RAM bits or logic in the memories and FIFO.  The modular 
exponentiation time was calculated by multiplying the time of a 
single Montgomery multiply with the number of multiplies, 

, for a modular exponentiation.   
 
The 32 PE parallelized scalable radix-4 design has the same 
number of full adder bits  as a 64 PE radix-2 design.  
For , the radix-4 design includes 6% fewer LUTs and 
20% fewer REGs than the left-shifting scalable radix-2 design of 
[3].  It performs 256-bit modular exponentiation in 42% less time, 
but 1024-bit modular exponentiation in 4% more time.  The short 
exponentiation (   ) is part of Case II, in which the cycle 

count scales inversely with , so we would expect about a 2x 
speedup.  The long exponentiation ( ) is part of Case I, in 
which the cycle count scales inversely with , so we would 
expect comparable cycle counts.  The cycle time is 7% slower for 
radix 4, so the total time is slightly faster than cycle counts would 
directly predict.  The parallelized radix-4 design also come at the 
expense of precomputing and storing  and . 
 
Compared to a conventional right-shifting scalable radix 2 design 
of [2] with the same hardware count, , the parallel design has 
comparable cycle counts for long operands but one fourth the 
cycle count for short operands, because of the higher radix and the 
shorter latency between PEs. 
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Table 2. Comparison of Modular Exponentiation Times 

 
Description Ref Technology Freq 

(MHz) 
w v 

(radix
-2v) 

p LUTs  REGs 16 x 16 
MULTs 

n T 
(ms) 
 

Parallel  
radix-4 
scalable 
 
 

This 
work 
 

Xilinx 
XC2V2000-06 
 

266 
 
 

16 2 16 2996 1955 0 256 0.33 
1024 17 

32 5916 3863 0 256 0.36 
1024 8.7 

64 11684 7642 0 256 0.42 
1024 5.1 

Parallel  
radix-216 

scalable 

[7] Xilinx 
XC2V2000-06 

106 16 16 4 739 611 8 256 0.43 
1024 22 

16 2657 2375 32 256 0.32 
1024 6.4 

Radix-216 

scalable 
 

[8] Xilinx 
XC2V2000-06 

106 16 16 4 686 980 8 256 0.41 
1024 21 

16 2438 3944 32 256 0.63 
1024 6.3 

Radix-4 scalable [4] 0.5 μm CMOS 181 8 2 16 10 Kgates 0 256 0.95 
1024 53 

Radix-8 scalable [5] 0.5 μm CMOS 88 8 3 16 16 Kgates 0 256 1.3 
1024 66 

Parallel improved 
radix-16 scalable 

[6] 0.25 μm 
CMOS 

180 32 4 32 150 Kgates 0 1024 3.4 

Parallel 
radix-2 
scalable 

[13] Xilinx 
XC2V2000-06 
 

403 16 1 16 1575 1189 0 256 0.41 
1024 21.8 

64 6006 4597 0 256 0.52 
1024 6.3 

Improved  
radix-2 
scalable 
 

[3] 
 

Xilinx 
XC2V2000-06 
 

285 
 

16 1 16 1408 1205 0 256 0.55 

1024 30 

64 6317 4844 0 256 0.62 

1024 8.4 
Tenca-Koç  
radix-2 scalable 

[2] 0.5 μm CMOS 192 8 1 40 28 Kgates 0 265 1.6 
1024 37 

Xilinx 
XC2V2000-06 
 

285 8 1 40 3902 2937 0 256 1.0 
1024 15 

5. CONCLUSIONS 
This paper describes a parallelized scalable radix-4 Montgomery 
multiplier design that reduces PE cycle latency and critical path 
length.  The design is suitable for situations where a dedicated 
hardware multiplier is undesirable or not available.  The design 
performs 2-4 times as fast as previous radix-2 designs for small 
multiplies, but about 4% slower for large multiplies because the 
cycle time is somewhat longer.  Each radix-4 PE uses 1.97 times 
as many LUTs as a radix-2 PE, so the total hardware consumption 
per bit processed per cycle is comparable. 
 
Future radix-4 designs could use Booth encoding instead of 
precomputed  and  values.  This might deliver similar 
performance with fewer registers needed to store precomputed 
values.  
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