

Nathaniel Pinckney and David Money Harris
Harvey Mudd College

301 Platt Blvd.
Claremont, CA 91711

{npinckney, David_Harris}@hmc.edu

ABSTRACT
This paper describes a parallelized radix-4 scalable Montgomery
multiplier implementation. The design does not require hardware
multipliers, and uses parallelized multiplication to shorten the
critical path. By left-shifting the sources rather than right-shifting
the result, the latency between processing elements is shortened
from two cycles to nearly one. The new design can perform
1024-bit modular exponentiation in 8.7 ms and 256-bit
exponentiation in 0.36 ms using 5916 Virtex2 4-input lookup
tables. This is comparable to radix-2 for long multiplies and
nearly twice as fast for short ones.

Categories and Subject Descriptors
B.2.4 [Arithmetic and Logic Structures]: High-Speed
Arithmetic – algorithms, cost/performance.

General Terms
Algorithms, Design, Performance.

Keywords
Cryptography, RSA, Montgomery Multiplication.

1. INTRODUCTION
Public key encryption schemes, including RSA, use modular
exponentiation of large numbers to encrypt data. This is secure
because factoring large numbers is computationally intensive and
becomes intractable for very large numbers. But, modular
exponentiation of large numbers is slow because of repeated
modular multiplications with division steps to calculate the
remainder. Montgomery multipliers [1] are useful because they
will perform modular multiplication of Montgomery residues
without the need of a division step. Hence, they can dramatically
increase the speed of encryption systems.

Older Montgomery multipliers are hard-wired to support a
particular operand length, . Scalable Montgomery multipliers
reuse -bit processing elements (PEs) many times to handle the
entire -bit operands, making them suitable to arbitrary-length
operands [2]. Previous scalable Montgomery multiplier designs

include radix-2 [3, 2], radix-4 [4], radix-8 [5], radix-16 [6], and
very high radix [7, 8]. A scalable radix- design processes bits
of the multiplier and bits of multiplicand per step. The scalable
very high radix designs commonly use dedicated
hardware multipliers. These multipliers are efficient on FPGAs
containing high-speed multipliers, but may be undesirable for
application-specific integrated circuits.

Conventional scalable Montgomery multipliers right-shift the
result after each PE. This leads to two-cycle latency between PEs.
By left-shifting the operands rather than right-shifting the result,
the latency can be reduced to nearly one cycle at the expense of a
small increase in the number of iterations through the PEs [3].

The critical path through a PE can be shortened by reordering the
steps of the Montgomery multiplication algorithm, which
parallelizes multiplications within the PE [9, 7, 6].

This paper describes a novel radix-4 Montgomery multiplier
design that left-shifts operands and parallelizes multiplications
within the PE. For short operands the multiplier is nearly twice as
fast as radix-2 designs and for long operands it is comparable.

2. MONTGOMERY MULTIPLICATION
Montgomery multiplication is defined as

Z = (XYR-1) mod M
where

X: n-bit multiplier
Y: n-bit multiplicand
M: n-bit odd modulus, typically prime

:
: modular multiplicative inverse of R

 () mod M = 1

The steps of Montgomery multiplication are shown in Figure 1.
Because , dividing by is equivalent to shifting right by
bits. has the property that the lower bits of
are 0. Hence, no information is lost during the reduction step.

Multiply: =
Reduce: =
 =
Normalize: If Z ≥ M then –

Figure 1. Montgomery multiplication algorithm

The algorithm involves three dependent multiplications. Orup
showed that it can be sped up by reordering steps and doing a
precomputation, to eliminate one of the multiplications and to
allow the other two to occur in parallel [9].

Parallelized Radix-4 Scalable Montgomery Multipliers

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
S B CC I’07, September 3–6, 2007, Rio de Janeiro, Brazil.
Copyright 2007 ACM 978-1-59593-816-9/07/0009…$5.00.

306

Note that we can also skip the normalization step for successive
Montgomery multiplications because if and
 , then [9, 10, 11, 12]. To do this we
increased the size of the operands to bits and let

where .

2.1 Parallelized Radix-4 Scalable Design
The parallelized radix-4 scalable algorithm is a hybrid of two
previous Montgomery multiplier designs: the improved unified
scalable radix-2 design [3] and the parallelized very high radix
scalable design [7]. Figure 2 shows the parallelized radix-4
scalable algorithm derived by [9, 7]. Parallel radix algorithms
require extending the operands by another bits, so
for radix 4. R also increases by . The variables are defined
below.

:
:
: -bit odd modulus
: -bit integer satisfying
: -bit integer

: bit multiplicand
: bit multiplier
: 3-bit carry
 scalable inner word length

: outer loop length

 inner loop length

 = 0
for i = 0 to
 = mod
 = 0
 for to e – 1
 (,) = (,) + C + +

Figure 2. Parallelized radix-4 scalable Montgomery algorithm

The precomputed is used so that no multiplication is needed to
calculate . The algorithm is scalable because it iterates over
words of the operands using fixed-sized PEs. The superscripts
denote -bit words for and -bit words for , , and . There

are -bit words of , , and Z, and 2-bit
words of in a radix-4 design with -bit PEs.

3. HARDWARE IMPLEMENTATION
As Tenca proposed [2], the Montgomery multiplier is built from a
systolic array of processing elements (PEs), as shown in
Figure 3. The architecture includes memories for , , and , a
FIFO to store partial words of and , and a sequence controller.
The memory also holds precomputed and values for
multiplications within the PEs. A FIFO holds results of the last
PE until the first PE has completed processing the current
operands. The FIFO has a latency of (typically 1) cycles. Bold
lines in the figure indicate variables in carry-save redundant form.

PE 1 PE 2 PE 3

0Mem

X Mem

PE p

Sequence
Controller

Result

Z

M
Y

x

Kernel

3M
3Y3Y 3M

Y M

Q

FIFO

Figure 3. Scalable Montgomery multiplier architecture

3.1 Processing Elements
The parallelized radix-4 processing element design is shown in
Figure 4. Each PE receives a different 2-bit word of X, so each
PE is assigned a different iteration of the outer loop of the radix-4
algorithm. For a kernel with PEs, pipeline cycles are
needed to process all of . The PEs also receive w bits of Y, , Z
in each clock cycle. Hence each PE requires cycles to process
all the iterations of the inner loop.

w

w

X

w

xptr

w

2

Y

Z (sum)

M

Q (sum)
2

C
SA

#3

0

3Y

Y<<1

Y

0
M
M<<1
3M

C
SA

#4

2

[w-1:0]

w+1

w+1

[w:0]

[w+1:1]

Y

M

Z

Q

C
SA

#1

[w-1:0]

[w-1:0]

[w-3:-2]

[w-3:-2]

[w-1:1]

2

[w-1:1]

[w+1:0]

[w
+2:w

]

[w
+1:w

]

[w+2:1]

[1
:0
]

[1
]

[1]

[0]
[1]

[0]

C
SA

#2[w-1:0] [w:0]

[w:1]

[w-1:0]

[w:1]

3Y

3M

[w-1:0]

[w-1:0]

3Y

3M

[w-3:-2]

[w-3:-2]

[w-1:0]

[w-3:-2]

Q (carry)

[1:0]

[1]

Z (carry)
[w-1:1]

lswcarry

Figure 4. Parallelized Radix-4 scalable Montgomery multiplier processing element

307

In one pipeline cycle, 2p bits of X are processed. Unlike a
previous design [7], we ensure that the final result is always taken
from the last PE in the kernel to simplify the hardware design. For
this to be true, , where is an integer number
of pipeline cycles.

Each PE contains two multiplexers, four 3:2 CSAs, datapath
registers (with control signals), and a feedback register for the
carry between iterations of the inner loop. and are
represented in carry-save redundant form for speed. Because the
CSAs do not have identical length operands, they are optimized
into combinations of half adders and full adders to reduce the
amount of hardware. Recall that and can range from 0 to 3
for radix-4. It is trivial to compute or when
either multiplier is 2, because and shift left by 1 bit.
Likewise, when the multiplier is 0 or 1 the product is also trivial.
When the multiplier is 3, computing the product in real-time
would be costly. Instead of including multipliers in the PEs,
precomputed and are stored in the memory and bussed to
each PE, where multiplexers are used to select the product. The
drawback of this is extra registers are added to accommodate
and in the PE. Since is stored in redundant form, it must
first be converted to non-redundant form, using an XOR, to select
the appropriate multiple of . The multiplexer select lines drive a
fanout of , so they must be buffered for adequate drive.

The PE shifts and left by two bits instead of right by two
after each step. This reduces cycle latency of the PE from two
cycles to a single cycle by removing the dependence on the lower
bits of the next word [3]. As with previous designs, the PE

is pipelined for single-cycle throughput. Every steps the
lowest word of is discarded because it is not in the final result.
To simplify implementation, a word is discarded between pipeline
cycles. Hence, our design requires that must be divisible by

.

So that and are constant for an entire pipeline cycle, xptr is
asserted at the start of a pipeline cycle, to enable the and
registers. A shift register, outside of the PE, sequentially asserts
PE xptrs as words transverse through the kernel.

For conventional Montgomery multiplications using instead of

, the discarded word is all zeros. However, in the parallel
version, the word is usually non-zero. Since the result is stored in
redundant form, conversion to non-redundant form could produce
a carry-out. Logic in the FIFO calculates a carry from the
discarded word and outputs to the first PE’s lswcarry, which is
added to the first word of the pipeline cycle. Instead of
propagating a carry between PEs through lswcarry, the discarded
word is processed an extra cycle so that the CSAs can propagate a
carry within the PE.

3.2 Latencies
A hardware pipeline diagram of the radix-4 design is shown in
Figure 5. The diagram assumes the minimum FIFO cycle latency

. Each PE completes a pipeline cycle in cycles plus an
additional cycle to handle overflow because is not shifted right
after each step.

PE 1 PE 2 PE 3 PE 4Cycle #

1

2

3

4

5

6

7

8

9

10

11

Y
Z

w-3:-2

w-3:-2

Y
Z

2w-3:w-2

2w-3:w-2

Y
Z

3w-3:2w-2

3w-3:2w-2

Y
Z

4w-3:3w-2

4w-3:3w-2

X
1:0

X
1:0

X
1:0

X
1:0

Y
Z

w-5:-4

w-5:-4

Y
Z

2w-5:w-4

2w-5:w-4

Y
Z

3w-5:2w-4

3w-5:2w-4

Y
Z

4w-5:3w-4

4w-5:3w-4

X
3:2

X
3:2

X
3:2

X
3:2

Y
Z

w-7:-6

w-7:-6

Y
Z

2w-7:w-6

2w-7:w-6

Y
Z

3w-7:2w-6

3w-7:2w-6

Y
Z

4w-7:3w-6

4w-7:3w-6

X
5:4

X
5:4

X
5:4

X
5:4

Y
Z

w-9:-8

w-9:-8

Y
Z

2w-9:w-8

2w-9:w-8

Y
Z

3w-9:2w-8

3w-9:2w-8

Y
Z

4w-9:3w-8

4w-9:3w-8

X
7:6

X
7:6

X
7:6

X
7:6

Y
Z

w-11:-10

w-11:-10

Y
Z

2w-11:w-10

2w-11:w-10

Y
Z

3w-11:2w-10

3w-11:2w-10

Y
Z

4w-11:3w-10

4w-11:3w-10

X
9:8

X
9:8

X
9:8

X
9:8

Y
Z

w-13:-12

w-13:-12

Y
Z

2w-13:w-12

2w-13:w-12

Y
Z

3w-13:2w-12

3w-13:2w-12

Y
Z

4w-13:3w-12

4w-13:3w-12

X
11:10

X
11:10

X
11:10

X
11:10

PE 1 PE 2Cycle #

1

2

3

4

5

6

7

8

9

10

11

Y
Z

w-5:-4

w-5:-4

Y
Z

2w-5:w-4

2w-5:w-4

Y
Z

3w-5:2w-4

3w-5:2w-4

Y
Z

4w-5:3w-4

4w-5:3w-4

X
3:2

X
3:2

X
3:2

X
3:2Y

Z
w-7:-6

w-7:-6

Y
Z

2w-7:w-6

2w-7:w-6

Y
Z

3w-7:2w-6

3w-7:2w-6

Y
Z

4w-7:3w-6

4w-7:3w-6

X
5:4

X
5:4

X
5:4

X
5:4

Y
Z

w-9:-8

w-9:-8

Y
Z

2w-9:w-8

2w-9:w-8

Y
Z

3w-9:2w-8

3w-9:2w-8

Y
Z

4w-9:3w-8

4w-9:3w-8

X
7:6

X
7:6

X
7:6

X
7:6

Y
Z

w-3:-2

w-3:-2

Y
Z

2w-3:w-2

2w-3:w-2

Y
Z

3w-3:2w-2

3w-3:2w-2

Y
Z

4w-3:3w-2

4w-3:3w-2

X
1:0

X
1:0

X
1:0

X
1:0

Stall

Figure 5. Hardware pipeline diagram for = 3. = 2 (Case I, left) and = 4 (Case II, right)

308

There are two cases for the time between pipeline cycles. Case I
occurs when the PEs are used continuously and is cycles
per pipeline cycle. Case II occurs when the first PE must wait for
the result from the last PE. For the first word to transverse
through all of the PEs, cycles are needed, where is the cycle
latency between PEs (1 in this design). An additional are
needed to handle discarded words of as and are shifted.
Lastly, an extra cycles are needed due to latency through the
FIFO. Therefore, Case II is cycles per pipeline
cycle. The figure is simplified to not show extra cycles for
Case II.

Because pipeline cycles are needed to process all bits of ,

 total cycles are needed in Case I for Montgomery
multiplication. Let denote the clock cycle period. The total
time for Montgomery multiplication is then

 for

In Case II, total cycles are needed for
Montgomery multiplication. Hence, the total Montgomery
multiplication time is

 for

Let be a metric for the amount of hardware in the
multiplier. We can rewrite the above delays in terms of the design
parameters , , , , , and , and the low order terms can be
dropped, so that the approximate number of cycles is

 for

 for

Hence, for Case I the time required for Montgomery
multiplication decreases linearly with amount of hardware in the
multiplier. For Case II, where operand lengths are short compared
to the hardware available, the time does not change with the
amount of hardware.

4. RESULTS
The processing elements were coded in Verilog and simulated in
ModelSim. Verilog for the parallelized radix-4 design, along with
previous Montgomery multiplier designs, has been synthesized in
Synplify Pro onto the Xilinx XC2V2000-6 Virtex II FPGA with
“Sequential Optimizations” disabled to prevent flip-flops from
being optimized into shift registers. A comparison of the
parallelized scalable radix-4 design with other Montgomery
multiplier designs is shown in Table 1. The critical path for the
radix-4 design is a multiplexer, a buffer, two CSAs, and a register,
which limits the speed to 266 Mhz for w = 16.

Table 1. Comparison of FPGA resource usage and clock speed

Architecture Reference w v 4-input

LUTs /
PE

Registers
/ PE

16 x 16
Mults /
PE

Critical Path Clock
Speed
(Mhz)

Parallel radix-4 scalable This work 4 2 55 46 0 2CSA + BUF + MUX + REG 271
8 2 106 70 0 266
16 2 187 121 0 266

Parallel
radix-216 scalable

[7] 16 16 130 147 2 MUL + CSA + CPA + REG 106

Radix-216

Scalable
[8] 16 16 146 247 2 MUL + CPA + MUX + REG 106

Parallel radix-2 scalable [13] 16 1 94 72 0 AND + 2CSA + BUF + REG 403
Improved
radix-2 scalable

[3] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285

Tenca-Koç
radix-2 scalable

[2] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285

A comparison of hardware usage and exponentiation time for the
parallelized radix-4 design with others is shown in Table 2. The
data includes the hardware in the PEs and controller, but not the
RAM bits or logic in the memories and FIFO. The modular
exponentiation time was calculated by multiplying the time of a
single Montgomery multiply with the number of multiplies,

, for a modular exponentiation.

The 32 PE parallelized scalable radix-4 design has the same
number of full adder bits as a 64 PE radix-2 design.
For , the radix-4 design includes 6% fewer LUTs and
20% fewer REGs than the left-shifting scalable radix-2 design of
[3]. It performs 256-bit modular exponentiation in 42% less time,
but 1024-bit modular exponentiation in 4% more time. The short
exponentiation () is part of Case II, in which the cycle

count scales inversely with , so we would expect about a 2x
speedup. The long exponentiation () is part of Case I, in
which the cycle count scales inversely with , so we would
expect comparable cycle counts. The cycle time is 7% slower for
radix 4, so the total time is slightly faster than cycle counts would
directly predict. The parallelized radix-4 design also come at the
expense of precomputing and storing and .

Compared to a conventional right-shifting scalable radix 2 design
of [2] with the same hardware count, , the parallel design has
comparable cycle counts for long operands but one fourth the
cycle count for short operands, because of the higher radix and the
shorter latency between PEs.

309

Table 2. Comparison of Modular Exponentiation Times

Description Ref Technology Freq

(MHz)
w v

(radix
-2v)

p LUTs REGs 16 x 16
MULTs

n T
(ms)

Parallel
radix-4
scalable

This
work

Xilinx
XC2V2000-06

266

16 2 16 2996 1955 0 256 0.33
1024 17

32 5916 3863 0 256 0.36
1024 8.7

64 11684 7642 0 256 0.42
1024 5.1

Parallel
radix-216

scalable

[7] Xilinx
XC2V2000-06

106 16 16 4 739 611 8 256 0.43
1024 22

16 2657 2375 32 256 0.32
1024 6.4

Radix-216

scalable

[8] Xilinx
XC2V2000-06

106 16 16 4 686 980 8 256 0.41
1024 21

16 2438 3944 32 256 0.63
1024 6.3

Radix-4 scalable [4] 0.5 μm CMOS 181 8 2 16 10 Kgates 0 256 0.95
1024 53

Radix-8 scalable [5] 0.5 μm CMOS 88 8 3 16 16 Kgates 0 256 1.3
1024 66

Parallel improved
radix-16 scalable

[6] 0.25 μm
CMOS

180 32 4 32 150 Kgates 0 1024 3.4

Parallel
radix-2
scalable

[13] Xilinx
XC2V2000-06

403 16 1 16 1575 1189 0 256 0.41
1024 21.8

64 6006 4597 0 256 0.52
1024 6.3

Improved
radix-2
scalable

[3]

Xilinx
XC2V2000-06

285

16 1 16 1408 1205 0 256 0.55

1024 30

64 6317 4844 0 256 0.62

1024 8.4
Tenca-Koç
radix-2 scalable

[2] 0.5 μm CMOS 192 8 1 40 28 Kgates 0 265 1.6
1024 37

Xilinx
XC2V2000-06

285 8 1 40 3902 2937 0 256 1.0
1024 15

5. CONCLUSIONS
This paper describes a parallelized scalable radix-4 Montgomery
multiplier design that reduces PE cycle latency and critical path
length. The design is suitable for situations where a dedicated
hardware multiplier is undesirable or not available. The design
performs 2-4 times as fast as previous radix-2 designs for small
multiplies, but about 4% slower for large multiplies because the
cycle time is somewhat longer. Each radix-4 PE uses 1.97 times
as many LUTs as a radix-2 PE, so the total hardware consumption
per bit processed per cycle is comparable.

Future radix-4 designs could use Booth encoding instead of
precomputed and values. This might deliver similar
performance with fewer registers needed to store precomputed
values.

6. ACKNOWLEDGMENTS
The authors thank the Clay-Wolkin Family Foundation fellowship
and Intel Circuit Research Lab for funding the research.

7. REFERENCES
[1] P. Montgomery, “Modular multiplication without trial division,”

Math. of Computation, vol. 44, no. 170, pp. 519-521, April 1985.
[2] A. Tenca and Ç. Koç, “A scalable architecture for modular

multiplication based on Montgomery’s algorithm,” IEEE Trans.
Computers, vol. 52, no. 9, Sept. 2003, pp. 1215-1221.

[3] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu,
“An improved unified scalable radix-2 Montgomery multiplier,”
Proc. 17th IEEE Symp. Computer Arithmetic, pp. 172-178, 2005.

[4] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4
modular multiplier design using recoding techniques,” Proc.
Asilomar Conf. Signals, Systems, and Computers, pp. 1445-1450,
2003.

[5] A. Tenca, G. Todorov, and Ç. Koç, “High-radix design of a scalable
modular multiplier,” Cryptographic Hardware and Embedded
Systems, Ç. Koç and C. Paar, eds., 2001, Lecture Notes in Computer
Science, No. 1717, pp. 189-206, Springer, Berlin, Germany.

[6] Y. Fan, X. Zeng, Y. Yu, G. Wang, and Q. Zhang, “A modified high-
radix scalable Montgomery multiplier,” Proc. Intl. Symp. Circuits
and Systems, pp. 3382-3385, 2006.

310

[7] K. Kelley and D. Harris, “Parallelized very high radix scalable
Montgomery multipliers,” Proc. Asilomar Conf. Signals, Systems,
and Computers, pp. 1196-1200, Nov. 2005.

[8] K. Kelley and D. Harris, “Very high radix scalable Montgomery
multipliers,” Proc. 5th Intl. Workshop on System-on-Chip,
pp. 400-404, July 2005.

[9] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic,
pp. 193-199, July 1995.

[10] T. Blum and C. Paar, “High-radix Montgomery multiplication on
reconfigurable hardware,” IEEE Trans. Computers, vol. 50, no. 7,
July 2001, pp. 759-764.

[11] C. Walter, “Montgomery exponentiation needs no final
subtractions,” Electronics Letters, vol. 35, no. 21, pp. 1831-1832,
14 October 1999.

[12] G. Hachez and J. Quisquater, “Montgomery exponentiation with no
final subtractions: improved results,” Lecture Notes in Computer
Science, C. Koç and C. Paar, eds., vol. 1965, pp. 293-301, 2000.

[13] N. Jiang and D. Harris, “Parallelized Radix-2 Scalable Montgomery
Multiplier,” submitted to IFIP Intl. Conf. on VLSI, 2007.

David Money Harris is an Associate Professor of Engineering at Harvey
Mudd College. He received his Ph.D. in Electrical Engineering from
Stanford in 1999, his M.Eng. degree in Electrical Engineering and
Computer Science from MIT in 1994, and his S.B. degrees in Mathematics
and Electrical Engineering from MIT in 1994. Dr. Harris has worked and
consulted at Intel Corporation, Sun Microsystems, and numerous other
companies in the area of integrated circuit design. He is the author of four
textbooks in the field.

Nathaniel Pinckney is a Clay-Wolkin fellow and senior engineering
major at Harvey Mudd College. He plans to pursue a Ph.D after
graduation. He has interned at Applied Minds and at a young startup
company.

311

