
 
 

 

 
ABSTRACT 

 
This paper describes a parallelized radix-4 scalable Montgomery multiplier implementation.  The design does not re-

quire hardware multipliers, and uses parallelized multiplication to shorten the critical path. By left-shifting the sources 
rather than right-shifting the result, the latency between processing elements is shortened from two cycles to nearly one.  
Multiplexers are used to select pre-computed products.  Carry-save adders propagate carry bits before words are dis-
carded.  The new design can perform 1024-bit modular exponentiation in 9.4 ms and 256-bit exponentiation in 0.38 ms 
using 4997 Virtex2 4-input lookup tables, while consuming 30% fewer LUTs than a previous parallelized radix-4 design.  
This is comparable to radix-2 for long multiplies and nearly twice as fast for short ones. 
 

Index Terms: Cryptography, RSA, Montgomery Multiplication. 
 

1. INTRODUCTION 

Public key encryption schemes, including RSA, use 
modular exponentiation of large numbers to encrypt data.  
This is secure because factoring large numbers is computa-
tionally intensive and becomes intractable for very large 
numbers.  But, modular exponentiation of large numbers is 
slow because of repeated modular multiplications with divi-
sion steps to calculate the remainder.    Montgomery multi-
pliers [1] are useful because they will perform modular 
multiplication of Montgomery residues without the need of 
a division step.  Hence, they can dramatically increase the 
speed of encryption systems. 

Older Montgomery multipliers are hard-wired to support 
a particular operand length, n.  Scalable Montgomery mul-
tipliers reuse w-bit processing elements (PEs) many times to 
handle the entire n-bit operands, making them suitable to 
arbitrary-length operands [2].  Previous scalable Montgom-
ery multiplier designs include radix-2 [3, 2], radix-4 [4], 
radix-8 [5], radix-16 [6], and very high radix [7, 8]. A scal-
able radix-2v design processes v bits of the multiplier and   
bits of multiplicand per step. The scalable very high radix 
designs commonly use dedicated w × v hardware multipli-
ers.  These multipliers are efficient on FPGAs containing 
high-speed multipliers, but may be undesirable for applica-
tion-specific integrated circuits. 

Conventional scalable Montgomery multipliers right-
shift the result after each PE.  This leads to two-cycle la-
tency between PEs.  By left-shifting the operands rather 
than right-shifting the result, the latency can be reduced to 
nearly one cycle at the expense of a small increase in the 
number of iterations through the PEs [3]. 

The critical path through a PE can be shortened by reor-
dering the steps of the Montgomery multiplication algo-
rithm, which parallelizes multiplications within the PE [9, 
7, 6]. 

This paper improves a previous parallelized radix-4 de-
sign [13] by reducing the required hardware and presents a 

novel solution for carry bit propagation when using redun-
dant form for partial words of the result.  As with the previ-
ous design, it left-shifts operands and parallelizes multipli-
cations within the PE.  For short operands the multiplier is 
nearly twice as fast as radix-2 designs and for long oper-
ands it is comparable.  

2. MONTGOMERY MULTIPLICATION 

Montgomery multiplication is defined as 
Z = (XYR-1) mod M 

where 
X:  n-bit multiplier 
Y:  n-bit multiplicand 
M: n-bit odd modulus, typically prime 

  R: 2n   
  R-1: modular multiplicative inverse of R 
  (RR-1) mod M = 1 
 
The steps of Montgomery multiplication are shown in 

Fig. 1.  Because R = 2n, dividing by R is equivalent to shift-
ing right by n bits.  Q has the property that the lower n   bits 
of [Z + Q × M] are 0.  Hence, no information is lost during 
the reduction step. 

The algorithm involves three dependent multiplications.  
Orup showed that it can be sped up by reordering steps and 
doing a precomputation, to eliminate one of the multiplica-
tions and to allow the other two to occur in parallel [9].   

Note that we can also skip the normalization step for 
successive Montgomery multiplications because if R > 4M 
and X, Y < 2M then Z < 2M [9, 10, 11, 12].  To do this we 
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Parallelized Radix-4 Scalable Montgomery Multipliers 

Multiply:   Z = X ×Y  

Reduce:   Q = Z × M ' mod R  
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Normalize:  if Z ≥ M  then Z = Z − M  
Figure 1.  Montgomery multiplication algorithm 



 
 

 

increased the size of the operands to n1 = n + 1 bits and let 
R = 22 n , where n2 = n + 2. 

A. Parallelized Radix-4 Scalable Design 

The parallelized radix-4 scalable algorithm is a hybrid of 
two previous Montgomery multiplier designs: the improved 
unified scalable radix-2 design [3] and the parallelized very 
high radix scalable design [7].  Fig. 2 shows the parallelized 
radix-4 scalable algorithm derived by [9, 7].  Parallel radix 
2v algorithms require extending the operands by another v 
bits, so n1 = n + 3 for radix 4. R also increases by 2v. The 
variables are defined below. 

 
 n1:  n + 3 
 n2:  n + 4 (or larger; see Section III) 
 M:  n-bit odd modulus 
 M′:  n2-bit integer satisfying (-MM′) mod 22 n  = 1 
 ˆ M :  n-bit integer  [(M′ mod 22) × M + 1)/22 
  Y:   n1-bit multiplicand 
  X:   n1-bit multiplier 
  C:  3-bit carry 
  w:  scalable inner word length 
  f:  outer loop length ⎡ ⎤2/2n   
  e:  inner loop length  ⎡ ⎤wn /1  

 
The precomputed ˆ M  is used so that no multiplication is 

needed to calculate Q.  The algorithm is scalable because it 
iterates over words of the operands using fixed-sized PEs.  
The superscripts denote 2-bit words for X and w-bit words 
for Y, Z, and ˆ M . There are e w-bit words of Y, ˆ M , and Z, 
and f 2-bit words of X in a radix-4 design with w-bit PEs 

3. HARDWARE IMPLEMENTATION 

As Tenca proposed [2], the Montgomery multiplier is 

built from a systolic array of processing elements (PEs), as 
shown in Fig. 3.  The architecture includes memories for X, 
Y, and ˆ M , a FIFO to store partial words of Z and Q, and a 
sequence controller.  The memory also holds precomputed 
3 ˆ M  and 3Y  values for multiplications within the PEs.  A 
FIFO holds results of the last PE until the first PE has com-
pleted processing the current operands.  The FIFO has a la-
tency of b (typically 1) cycles.  Bold lines in the figure indi-
cate variables in carry-save redundant form. 

A. Processing Elements 

The parallelized radix-4 processing element design is 
shown in Fig. 4.  It is similar to the design from [13] but 
optimizes out two w-bit carry-save adders (CSAs). 

Each PE receives a different 2-bit word of X and thus 
handles a different iteration of the outer loop of the radix-4 
algorithm.  The number of outer loop iterations typically 
exceeds the number PEs, thus the kernel pipeline may be 
used multiple times during a single multiply.  For a kernel 
with p PEs, k = f/p pipeline cycles are needed to process all 
of X.  The PEs also receive w bits of Y, ˆ M , and Z in each 
clock cycle.  Hence each PE requires e cycles to process all 
the iterations of the inner loop. 

In one pipeline cycle, 2p bits of X are processed.  Unlike 
a previous design [7], we ensure that the final result is al-
ways taken from the last PE in the kernel to simplify the 
hardware design. For this to be true, n2 = 2pk ≥ n + 4 , 
where k is an integer number of pipeline cycles.   

Z and Q are represented in carry-save redundant form for 
speed.  Each PE contains two multiplexers to select the ap-
prorpate multiples of Y and M, two 3:2 CSAs to add these 
multiples to Z, datapath registers (with control signals), and 
a feedback register for the carry between iterations of the 
inner loop.  Because the CSAs do not have identical length 
operands, they are optimized into combinations of half ad-
ders and full adders to reduce the amount of hardware.  Re-
call that Xi and Qi can range from 0 to 3 for radix-4.  It is 
trivial to compute X i ×Y j  or Qi × ˆ M j  when either multi-
plier is 2, because Y j  and ˆ M j  shift left by 1 bit.  Likewise, 
when the multiplier is 0 or 1 the product is also trivial.  
When the multiplier is 3, computing the product in real-time 
would be costly.  Instead of including multipliers in the 
PEs, precomputed 3Y j  and 3 ˆ M j  are stored in the memory 
and bussed to each PE, where multiplexers are used to se-
lect the product.  The drawback of this is extra registers are 
added to accommodate 3Y j  and 3 ˆ M j  in the PE.  Since Q is 
stored in redundant form, it must first be converted to non-
redundant form, using an XOR, to select the appropriate 
multiple of ˆ M j .  The multiplexer select lines drive a fanout 
of w + 1, so they must be buffered for adequate drive. 

Z = 0 
for i = 0 to f – 1 
 Qi = Z 0 mod 22  
 C = 0 
 for j = 0 to e – 1 
  (C, Z j ) = ( Z1:0

j+1 , j
wZ 2:1− ) + C + Qi × ˆ M j  + X i ×Y j  

 
Figure 2.  Parallelized radix-4 scalable Montgomery algorithm 

 
Figure 3.  Scalable Montgomery multiplier architecture 



 
 

 

The PE shifts Y j  and ˆ M j  left by two bits instead of  
right by two after each step.  This reduces cycle latency of 
the PE from two cycles to a single cycle by removing the 
dependence on the lower bits of the next Z j+1  word [3].  As 
with previous designs, the PE is pipelined for single-cycle 
throughput.  Every w/2 steps the lowest word of Z is dis-
carded because it is not in the final result.  To simplify im-
plementation, a word is always discarded in the FIFO be-
tween pipeline cycles.  Hence, our design requires that 2p 
must be divisible by w. 

So that X i  and Qi  are constant for an entire pipeline cy-
cle, xptr is asserted at the start of a pipeline cycle, to enable 
the X i  and Qi  registers.  A shift register, outside of the PE, 
sequentially asserts PE xptrs as words transverse through 
the kernel.  It similarly asserts discard to suppress the input 
registers and discard words of Z. 

For conventional Montgomery multiplications using M 
instead of ˆ M , the discarded word is all zeros.  However, in 
the parallel version, the word is usually non-zero.  Since the 
result is stored in redundant form, conversion to non-
redundant form could produce a carry-out.   The FIFO dis-
cards a word, so logic in the FIFO calculates a carry out 
from the first word and outputs to the first PE’s lswcarry.  
During the first word in each PE, the carry feedback regis-
ters are always zero.  Hence, lswcarry is selected by a mul-
tiplexer and added to the first word by the first CSA.  This 
logic is only included for the first PE. 

Subsequent PEs rely on the CSAs to propagate carry bits 
of discarded words.  If a least significant bit of an input to a 
3:2 CSA is zero, the least significant bit of the result will 
always be in non-redundant form.  This can be extended to 
the two PE CSAs.  Fig. 5 shows a dot diagram of the first 

word Z0 when X i ×Y j  and Qi × ˆ M j  have been shifted left 
by two bits during a previous step.  Note that the two LSBs 
of the results are in non-redundant form.  Because each PE 
contains two CSAs, two bits of Z0 will be converted to non-
redundant form after each step if the corresponding bits of 
X i ×Y j  and Qi × ˆ M j  are also zero.  By delaying discard-

ing of words between PEs by one step, the CSAs can be 
used to propagate carry bits.  Hence, the lswcarry multi-
plexer is not needed except in the first PE and lswcarry 
does not need to be generated between PEs. 

B. FIFO 

The FIFO stores partial words Zj and Qi in non-
redundant form to reduce FIFO memory size. Since the 
FIFO discards a word of Zj, it must calculate the carry out 
lswcarry from the discarded word.  The FIFO design in-
cludes a 2-bit CPA, feedback registers, multiplexers, AND 
gates, and memory, as shown in shown in Fig. 6.   
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Figure 4.  Parallelized Radix-4 scalable Montgomery multiplier processing element 

 
 

Figure 5.  Dot diagram of first word of Z processed by CSAs 



 
 

 

In this design, the LSB of the Z redundant form carry 
word is always zero.  Hence, instead of adding the two up-
per bits of sum and carry together to generate lswcarry, an 
AND gate is used because only the upper bit of each is in 
redundant form. The CPA converts Zj to non-redundant 
form for the final result and for partial words stored in the 
FIFO memory.  When Bypass FIFO is asserted, the FIFO 
memory is bypassed to minimize FIFO cycle latency to 
b = 1.  A 2:1 multiplexer is used to select between the 
stored partial word and the current partial word.  Since par-
tial words in the FIFO memory are stored in non-redundant 
form, an AND gate is used instead of a multiplexer to zero 
the partial Zj and Qi carry words. 

Two AND gates after the first set of flip flops are used to 
discard words of Z, except during the last cycle for the re-
sult.  AND gates at the end of the FIFO suppress the output 
to the PEs during the first and last cycles. 

C. Latencies 

A hardware pipeline diagram of the radix-4 design is 
shown in Fig. 7.  The diagram assumes the minimum FIFO 
cycle latency b = 1.  Each PE completes a pipeline cycle in 
e cycles plus an additional cycle to handle overflow because 
Z is not shifted right after each step. 

There are two cases for the time between pipeline cycles.  
Case I occurs when the PEs are used continuously and is 
e + 1 cycles per pipeline cycle.  Case II occurs when the 
first PE must wait for the result from the last PE.  For the 
first word to transverse through all of the PEs, lp cycles are 
needed, where l is the cycle latency between PEs (1 in this 
design).  An additional vp/w are needed to handle discarded 

words of Z j  as Y j  and ˆ M j  are shifted.  Lastly, an extra b 
cycles are needed due to latency through the FIFO.  There-
fore, Case II is lp + vp/w + b cycles per pipeline cycle.  The 
figure is simplified to not show vp/w extra cycles for Case 
II. 

Because k pipeline cycles are needed to process all bits 
of X, k(e + 1) total cycles are needed in Case I for Mont-
gomery multiplication.  Let Tc denote the clock cycle pe-
riod.  The total time for Montgomery multiplication is then 

 
T1 = k(e + 1)Tc for e+1≥ lp+ vp /w + b  

 
In Case II, k(lp+ vp / w + b)  total cycles are needed for 

Montgomery multiplication.  Hence, the total Montgomery 
multiplication time is 

 
T2 = k(lp + vp/w + b)Tc for e+1< lp+ vp /w + b  

 
Let m = vwp be a metric for the amount of hardware in 

the multiplier.  We can rewrite the above delays in terms of 
the design parameters n, w, v, p, l, and m, and the low order 
terms can be dropped, so that the approximate number of 
cycles is 

 
d1 = n2/m for n ≥ lwp  

 
d2 = nl/v for n < lwp  

 
 
Hence, for Case I the time required for Montgomery 

multiplication decreases linearly with amount of hardware 

 
Figure 6.  Parallelized Radix-4 scalable Montgomery multiplier FIFO 



 
 

 

in the multiplier.  For Case II, where operand lengths are 
short compared to the hardware available, the time does not 
change with the amount of hardware. 

4. RESULTS 

The processing elements were coded in Verilog and 
simulated in ModelSim.  The parallelized radix-4 design, 
along with previous Montgomery multiplier designs, has 
been synthesized in Synplify Pro onto the Xilinx 
XC2V2000-6 Virtex II FPGA with “Sequential Optimiza-
tions” disabled to prevent flip-flops from being optimized 
into shift registers.  A comparison of the parallelized scal-
able radix-4 design with other Montgomery multiplier de-
signs is shown in Table I.  Clock speed for the new design 
was obtained by synthesizing kernel with p = 2.  The criti-
cal path for the radix-4 design is identical to [13].  It in-
cludes multiplexer, a buffer, two CSAs, and a register, 
which limits the speed to 248 Mhz for w = 16.  Compared 
to [13] this design consumes 30% fewer LUTs and compa-
rable number of REGs. 

A comparison of hardware usage and exponentiation 
time for the parallelized radix-4 design with others is shown 
in Table II.  The data includes the hardware in the PEs and 
controller, but not the RAM bits or logic in the memories 
and FIFO.  The modular exponentiation time was calculated 
by multiplying the time of a single Montgomery multiply 
with the number of multiplies, 2n + 2, for a modular expo-
nentiation.   

The 32 PE parallelized scalable radix-4 design has the 
same number of full adder bits m = vwp as a 64 PE radix-2 
design.  For w = 16, the radix-4 design includes 17% fewer 
LUTs and 12% fewer registers than the parallelized left-
shifting scalable radix-2 design of [14].  It performs 256-bit 
modular exponentiation in 42% less time, but 1024-bit 
modular exponentiation in 18% more time.  The short ex-
ponentiation (n < lwp) is part of Case II, in which the cycle 
count scales inversely with v, so we would expect about 

half the number of cycles.  The long exponentiation 
( n ≥ lwp ) is part of Case I, in which the cycle count scales 
inversely with m, so we would expect comparable cycle 
counts.  The cycle time is 22% slower for radix-4, so the 
total time is correspondingly longer. The parallelized radix-
4 design also come at the expense of precomputing and 
storing 3Y  and 3 ˆ M . 

In a system whose clock period is limited by other fac-
tors, the radix-4 design is clearly superior to radix-2 be-
cause it uses half the number of cycles for short operands 
and a comparable number for long operands, while requir-
ing fewer LUTs and registers. 

5. CONCLUSIONS 

This paper describes a parallelized scalable radix-4 
Montgomery multiplier design that reduces PE cycle la-
tency and critical path length.  The design is suitable for 
situations where a dedicated hardware multiplier is undesir-
able or not available.  The design performs 42% faster or 
half as many clock cycles as previous radix-2 designs for 
small multiplies, but about 18% slower for large multiplies 
because the cycle time is longer.  The kernel uses 12% 
fewer REGs and 17% fewer LUTs compared to a radix-2 
kernel.  This design improves upon a previous parallelized 
radix-4 design [13] by using 30% fewer LUTs and compa-
rable REGs in each PE for w = 16. 

Future radix-4 designs could use Booth encoding instead 
of precomputed 3Y  and 3 ˆ M  values.  This might deliver 
similar performance with fewer registers needed to store 
precomputed values.  FPGA synthesis results for Mont-
gomery multiplier architectures are compared in this paper.  
Future research could compare ASIC implementations of 
these architectures. 

 
Figure 7.  Hardware pipeline diagram for e = 3, p = 2 (Case I, left) and p = 4 (Case II, right) 
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Table II.  Comparison of modular exponentiation times 

Description Ref Technology Freq 
(MHz) 

w v 
(radix-2v) 

p LUTs  REGs n T 
(ms) 

256 0.35 16 3079 2048 
1024 18 
256 0.38 32 4997 4051 
1024 9.4 
256 0.45 

Parallel  
radix-4 
scalable 
 
 

This 
work 
 

Xilinx 
XC2V2000-06 
 

248 
 
 

16 2 

64 8428 7543 
1024 5.4 
256 0.33 16 2996 1955 
1024 17 
256 0.36 32 5916 3863 
1024 8.7 
256 0.42 

Parallel 
radix-4 
scalable 

[13] Xilinx 
XC2V2000-06 
 

266 16 2 

64 11684 7642 
1024 5.1 
256 0.52 16 1575 1189 
1024 28 

256 0.66 

Parallel 
radix-2 
scalable 

[14] Xilinx 
XC2V2000-06 
 

318 16 1 

64 6006 4597 
1024 8.0 

256 0.55 16 1408 1205 

1024 30 

256 0.62 

Improved  
radix-2 
scalable 
 

[3] 
 

Xilinx 
XC2V2000-06 
 

285 
 

16 1 

64 6317 4844 

1024 8.4 

 

 
Table I.  Comparison of FPGA resource usage and clock speed 

Architecture Reference w v 4-input 
LUTs 
/ PE 

Registers 
/ PE 

16 x 16 
Mults 
/ PE 

Critical Path Clock 
Speed 
(Mhz) 

4 2 35 45 0 
8 2 66 69 0 

Parallel radix-4 scalable This work 

16 2 132 120 0 

               2CSA + BUF + MUX + REG  248 
 

Parallel radix-4 scalable [13] 16 2 187 121 0                2CSA + BUF + MUX + REG 266 
Parallel radix-2 scalable [14] 16 1 94 72 0 AND  + 2CSA  + BUF              + REG 318 
Improved  
radix-2 scalable 

[3] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285 

Tenca-Koç 
radix-2 scalable 

[2] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285 

 


