

ABSTRACT

This paper describes a parallelized radix-4 scalable Montgomery multiplier implementation. The design does not re-

quire hardware multipliers, and uses parallelized multiplication to shorten the critical path. By left-shifting the sources
rather than right-shifting the result, the latency between processing elements is shortened from two cycles to nearly one.
Multiplexers are used to select pre-computed products. Carry-save adders propagate carry bits before words are dis-
carded. The new design can perform 1024-bit modular exponentiation in 9.4 ms and 256-bit exponentiation in 0.38 ms
using 4997 Virtex2 4-input lookup tables, while consuming 30% fewer LUTs than a previous parallelized radix-4 design.
This is comparable to radix-2 for long multiplies and nearly twice as fast for short ones.

Index Terms: Cryptography, RSA, Montgomery Multiplication.

1. INTRODUCTION

Public key encryption schemes, including RSA, use
modular exponentiation of large numbers to encrypt data.
This is secure because factoring large numbers is computa-
tionally intensive and becomes intractable for very large
numbers. But, modular exponentiation of large numbers is
slow because of repeated modular multiplications with divi-
sion steps to calculate the remainder. Montgomery multi-
pliers [1] are useful because they will perform modular
multiplication of Montgomery residues without the need of
a division step. Hence, they can dramatically increase the
speed of encryption systems.

Older Montgomery multipliers are hard-wired to support
a particular operand length, n. Scalable Montgomery mul-
tipliers reuse w-bit processing elements (PEs) many times to
handle the entire n-bit operands, making them suitable to
arbitrary-length operands [2]. Previous scalable Montgom-
ery multiplier designs include radix-2 [3, 2], radix-4 [4],
radix-8 [5], radix-16 [6], and very high radix [7, 8]. A scal-
able radix-2v design processes v bits of the multiplier and
bits of multiplicand per step. The scalable very high radix
designs commonly use dedicated w × v hardware multipli-
ers. These multipliers are efficient on FPGAs containing
high-speed multipliers, but may be undesirable for applica-
tion-specific integrated circuits.

Conventional scalable Montgomery multipliers right-
shift the result after each PE. This leads to two-cycle la-
tency between PEs. By left-shifting the operands rather
than right-shifting the result, the latency can be reduced to
nearly one cycle at the expense of a small increase in the
number of iterations through the PEs [3].

The critical path through a PE can be shortened by reor-
dering the steps of the Montgomery multiplication algo-
rithm, which parallelizes multiplications within the PE [9,
7, 6].

This paper improves a previous parallelized radix-4 de-
sign [13] by reducing the required hardware and presents a

novel solution for carry bit propagation when using redun-
dant form for partial words of the result. As with the previ-
ous design, it left-shifts operands and parallelizes multipli-
cations within the PE. For short operands the multiplier is
nearly twice as fast as radix-2 designs and for long oper-
ands it is comparable.

2. MONTGOMERY MULTIPLICATION

Montgomery multiplication is defined as
Z = (XYR-1) mod M

where
X: n-bit multiplier
Y: n-bit multiplicand
M: n-bit odd modulus, typically prime

 R: 2n
 R-1: modular multiplicative inverse of R
 (RR-1) mod M = 1

The steps of Montgomery multiplication are shown in

Fig. 1. Because R = 2n, dividing by R is equivalent to shift-
ing right by n bits. Q has the property that the lower n bits
of [Z + Q × M] are 0. Hence, no information is lost during
the reduction step.

The algorithm involves three dependent multiplications.
Orup showed that it can be sped up by reordering steps and
doing a precomputation, to eliminate one of the multiplica-
tions and to allow the other two to occur in parallel [9].

Note that we can also skip the normalization step for
successive Montgomery multiplications because if R > 4M
and X, Y < 2M then Z < 2M [9, 10, 11, 12]. To do this we

 Nathaniel Pinckney and David Money Harris1

1 Harvey Mudd College, 301 Platt. Blvd., Claremont, CA, USA
e-mail: npinckney@hmc.edu

Parallelized Radix-4 Scalable Montgomery Multipliers

Multiply: Z = X ×Y

Reduce: Q = Z × M ' mod R

RMQZZ /][×+=

Normalize: if Z ≥ M then Z = Z − M
Figure 1. Montgomery multiplication algorithm

increased the size of the operands to n1 = n + 1 bits and let
R = 22 n , where n2 = n + 2.

A. Parallelized Radix-4 Scalable Design

The parallelized radix-4 scalable algorithm is a hybrid of
two previous Montgomery multiplier designs: the improved
unified scalable radix-2 design [3] and the parallelized very
high radix scalable design [7]. Fig. 2 shows the parallelized
radix-4 scalable algorithm derived by [9, 7]. Parallel radix
2v algorithms require extending the operands by another v
bits, so n1 = n + 3 for radix 4. R also increases by 2v. The
variables are defined below.

 n1: n + 3
 n2: n + 4 (or larger; see Section III)
 M: n-bit odd modulus
 M′: n2-bit integer satisfying (-MM′) mod 22 n = 1
 ˆ M : n-bit integer [(M′ mod 22) × M + 1)/22
 Y: n1-bit multiplicand
 X: n1-bit multiplier
 C: 3-bit carry
 w: scalable inner word length
 f: outer loop length ⎡ ⎤2/2n
 e: inner loop length ⎡ ⎤wn /1

The precomputed ˆ M is used so that no multiplication is

needed to calculate Q. The algorithm is scalable because it
iterates over words of the operands using fixed-sized PEs.
The superscripts denote 2-bit words for X and w-bit words
for Y, Z, and ˆ M . There are e w-bit words of Y, ˆ M , and Z,
and f 2-bit words of X in a radix-4 design with w-bit PEs

3. HARDWARE IMPLEMENTATION

As Tenca proposed [2], the Montgomery multiplier is

built from a systolic array of processing elements (PEs), as
shown in Fig. 3. The architecture includes memories for X,
Y, and ˆ M , a FIFO to store partial words of Z and Q, and a
sequence controller. The memory also holds precomputed
3 ˆ M and 3Y values for multiplications within the PEs. A
FIFO holds results of the last PE until the first PE has com-
pleted processing the current operands. The FIFO has a la-
tency of b (typically 1) cycles. Bold lines in the figure indi-
cate variables in carry-save redundant form.

A. Processing Elements

The parallelized radix-4 processing element design is
shown in Fig. 4. It is similar to the design from [13] but
optimizes out two w-bit carry-save adders (CSAs).

Each PE receives a different 2-bit word of X and thus
handles a different iteration of the outer loop of the radix-4
algorithm. The number of outer loop iterations typically
exceeds the number PEs, thus the kernel pipeline may be
used multiple times during a single multiply. For a kernel
with p PEs, k = f/p pipeline cycles are needed to process all
of X. The PEs also receive w bits of Y, ˆ M , and Z in each
clock cycle. Hence each PE requires e cycles to process all
the iterations of the inner loop.

In one pipeline cycle, 2p bits of X are processed. Unlike
a previous design [7], we ensure that the final result is al-
ways taken from the last PE in the kernel to simplify the
hardware design. For this to be true, n2 = 2pk ≥ n + 4 ,
where k is an integer number of pipeline cycles.

Z and Q are represented in carry-save redundant form for
speed. Each PE contains two multiplexers to select the ap-
prorpate multiples of Y and M, two 3:2 CSAs to add these
multiples to Z, datapath registers (with control signals), and
a feedback register for the carry between iterations of the
inner loop. Because the CSAs do not have identical length
operands, they are optimized into combinations of half ad-
ders and full adders to reduce the amount of hardware. Re-
call that Xi and Qi can range from 0 to 3 for radix-4. It is
trivial to compute X i ×Y j or Qi × ˆ M j when either multi-
plier is 2, because Y j and ˆ M j shift left by 1 bit. Likewise,
when the multiplier is 0 or 1 the product is also trivial.
When the multiplier is 3, computing the product in real-time
would be costly. Instead of including multipliers in the
PEs, precomputed 3Y j and 3 ˆ M j are stored in the memory
and bussed to each PE, where multiplexers are used to se-
lect the product. The drawback of this is extra registers are
added to accommodate 3Y j and 3 ˆ M j in the PE. Since Q is
stored in redundant form, it must first be converted to non-
redundant form, using an XOR, to select the appropriate
multiple of ˆ M j . The multiplexer select lines drive a fanout
of w + 1, so they must be buffered for adequate drive.

Z = 0
for i = 0 to f – 1
 Qi = Z 0 mod 22
 C = 0
 for j = 0 to e – 1
 (C, Z j) = (Z1:0

j+1 , j
wZ 2:1−) + C + Qi × ˆ M j + X i ×Y j

Figure 2. Parallelized radix-4 scalable Montgomery algorithm

Figure 3. Scalable Montgomery multiplier architecture

The PE shifts Y j and ˆ M j left by two bits instead of
right by two after each step. This reduces cycle latency of
the PE from two cycles to a single cycle by removing the
dependence on the lower bits of the next Z j+1 word [3]. As
with previous designs, the PE is pipelined for single-cycle
throughput. Every w/2 steps the lowest word of Z is dis-
carded because it is not in the final result. To simplify im-
plementation, a word is always discarded in the FIFO be-
tween pipeline cycles. Hence, our design requires that 2p
must be divisible by w.

So that X i and Qi are constant for an entire pipeline cy-
cle, xptr is asserted at the start of a pipeline cycle, to enable
the X i and Qi registers. A shift register, outside of the PE,
sequentially asserts PE xptrs as words transverse through
the kernel. It similarly asserts discard to suppress the input
registers and discard words of Z.

For conventional Montgomery multiplications using M
instead of ˆ M , the discarded word is all zeros. However, in
the parallel version, the word is usually non-zero. Since the
result is stored in redundant form, conversion to non-
redundant form could produce a carry-out. The FIFO dis-
cards a word, so logic in the FIFO calculates a carry out
from the first word and outputs to the first PE’s lswcarry.
During the first word in each PE, the carry feedback regis-
ters are always zero. Hence, lswcarry is selected by a mul-
tiplexer and added to the first word by the first CSA. This
logic is only included for the first PE.

Subsequent PEs rely on the CSAs to propagate carry bits
of discarded words. If a least significant bit of an input to a
3:2 CSA is zero, the least significant bit of the result will
always be in non-redundant form. This can be extended to
the two PE CSAs. Fig. 5 shows a dot diagram of the first

word Z0 when X i ×Y j and Qi × ˆ M j have been shifted left
by two bits during a previous step. Note that the two LSBs
of the results are in non-redundant form. Because each PE
contains two CSAs, two bits of Z0 will be converted to non-
redundant form after each step if the corresponding bits of
X i ×Y j and Qi × ˆ M j are also zero. By delaying discard-

ing of words between PEs by one step, the CSAs can be
used to propagate carry bits. Hence, the lswcarry multi-
plexer is not needed except in the first PE and lswcarry
does not need to be generated between PEs.

B. FIFO

The FIFO stores partial words Zj and Qi in non-
redundant form to reduce FIFO memory size. Since the
FIFO discards a word of Zj, it must calculate the carry out
lswcarry from the discarded word. The FIFO design in-
cludes a 2-bit CPA, feedback registers, multiplexers, AND
gates, and memory, as shown in shown in Fig. 6.

C
SA

 #2

 [1
:0

]
 [1

]

C
SA

 #1

Figure 4. Parallelized Radix-4 scalable Montgomery multiplier processing element

Figure 5. Dot diagram of first word of Z processed by CSAs

In this design, the LSB of the Z redundant form carry
word is always zero. Hence, instead of adding the two up-
per bits of sum and carry together to generate lswcarry, an
AND gate is used because only the upper bit of each is in
redundant form. The CPA converts Zj to non-redundant
form for the final result and for partial words stored in the
FIFO memory. When Bypass FIFO is asserted, the FIFO
memory is bypassed to minimize FIFO cycle latency to
b = 1. A 2:1 multiplexer is used to select between the
stored partial word and the current partial word. Since par-
tial words in the FIFO memory are stored in non-redundant
form, an AND gate is used instead of a multiplexer to zero
the partial Zj and Qi carry words.

Two AND gates after the first set of flip flops are used to
discard words of Z, except during the last cycle for the re-
sult. AND gates at the end of the FIFO suppress the output
to the PEs during the first and last cycles.

C. Latencies

A hardware pipeline diagram of the radix-4 design is
shown in Fig. 7. The diagram assumes the minimum FIFO
cycle latency b = 1. Each PE completes a pipeline cycle in
e cycles plus an additional cycle to handle overflow because
Z is not shifted right after each step.

There are two cases for the time between pipeline cycles.
Case I occurs when the PEs are used continuously and is
e + 1 cycles per pipeline cycle. Case II occurs when the
first PE must wait for the result from the last PE. For the
first word to transverse through all of the PEs, lp cycles are
needed, where l is the cycle latency between PEs (1 in this
design). An additional vp/w are needed to handle discarded

words of Z j as Y j and ˆ M j are shifted. Lastly, an extra b
cycles are needed due to latency through the FIFO. There-
fore, Case II is lp + vp/w + b cycles per pipeline cycle. The
figure is simplified to not show vp/w extra cycles for Case
II.

Because k pipeline cycles are needed to process all bits
of X, k(e + 1) total cycles are needed in Case I for Mont-
gomery multiplication. Let Tc denote the clock cycle pe-
riod. The total time for Montgomery multiplication is then

T1 = k(e + 1)Tc for e+1≥ lp+ vp /w + b

In Case II, k(lp+ vp / w + b) total cycles are needed for

Montgomery multiplication. Hence, the total Montgomery
multiplication time is

T2 = k(lp + vp/w + b)Tc for e+1< lp+ vp /w + b

Let m = vwp be a metric for the amount of hardware in

the multiplier. We can rewrite the above delays in terms of
the design parameters n, w, v, p, l, and m, and the low order
terms can be dropped, so that the approximate number of
cycles is

d1 = n2/m for n ≥ lwp

d2 = nl/v for n < lwp

Hence, for Case I the time required for Montgomery

multiplication decreases linearly with amount of hardware

Figure 6. Parallelized Radix-4 scalable Montgomery multiplier FIFO

in the multiplier. For Case II, where operand lengths are
short compared to the hardware available, the time does not
change with the amount of hardware.

4. RESULTS

The processing elements were coded in Verilog and
simulated in ModelSim. The parallelized radix-4 design,
along with previous Montgomery multiplier designs, has
been synthesized in Synplify Pro onto the Xilinx
XC2V2000-6 Virtex II FPGA with “Sequential Optimiza-
tions” disabled to prevent flip-flops from being optimized
into shift registers. A comparison of the parallelized scal-
able radix-4 design with other Montgomery multiplier de-
signs is shown in Table I. Clock speed for the new design
was obtained by synthesizing kernel with p = 2. The criti-
cal path for the radix-4 design is identical to [13]. It in-
cludes multiplexer, a buffer, two CSAs, and a register,
which limits the speed to 248 Mhz for w = 16. Compared
to [13] this design consumes 30% fewer LUTs and compa-
rable number of REGs.

A comparison of hardware usage and exponentiation
time for the parallelized radix-4 design with others is shown
in Table II. The data includes the hardware in the PEs and
controller, but not the RAM bits or logic in the memories
and FIFO. The modular exponentiation time was calculated
by multiplying the time of a single Montgomery multiply
with the number of multiplies, 2n + 2, for a modular expo-
nentiation.

The 32 PE parallelized scalable radix-4 design has the
same number of full adder bits m = vwp as a 64 PE radix-2
design. For w = 16, the radix-4 design includes 17% fewer
LUTs and 12% fewer registers than the parallelized left-
shifting scalable radix-2 design of [14]. It performs 256-bit
modular exponentiation in 42% less time, but 1024-bit
modular exponentiation in 18% more time. The short ex-
ponentiation (n < lwp) is part of Case II, in which the cycle
count scales inversely with v, so we would expect about

half the number of cycles. The long exponentiation
(n ≥ lwp) is part of Case I, in which the cycle count scales
inversely with m, so we would expect comparable cycle
counts. The cycle time is 22% slower for radix-4, so the
total time is correspondingly longer. The parallelized radix-
4 design also come at the expense of precomputing and
storing 3Y and 3 ˆ M .

In a system whose clock period is limited by other fac-
tors, the radix-4 design is clearly superior to radix-2 be-
cause it uses half the number of cycles for short operands
and a comparable number for long operands, while requir-
ing fewer LUTs and registers.

5. CONCLUSIONS

This paper describes a parallelized scalable radix-4
Montgomery multiplier design that reduces PE cycle la-
tency and critical path length. The design is suitable for
situations where a dedicated hardware multiplier is undesir-
able or not available. The design performs 42% faster or
half as many clock cycles as previous radix-2 designs for
small multiplies, but about 18% slower for large multiplies
because the cycle time is longer. The kernel uses 12%
fewer REGs and 17% fewer LUTs compared to a radix-2
kernel. This design improves upon a previous parallelized
radix-4 design [13] by using 30% fewer LUTs and compa-
rable REGs in each PE for w = 16.

Future radix-4 designs could use Booth encoding instead
of precomputed 3Y and 3 ˆ M values. This might deliver
similar performance with fewer registers needed to store
precomputed values. FPGA synthesis results for Mont-
gomery multiplier architectures are compared in this paper.
Future research could compare ASIC implementations of
these architectures.

Figure 7. Hardware pipeline diagram for e = 3, p = 2 (Case I, left) and p = 4 (Case II, right)

ACKNOWLEDGEMENTS

The authors thank the Clay-Wolkin Family Foundation
fellowship and Intel Circuit Research Lab for funding the
research.

REFERENCES

[1] P. Montgomery, “Modular multiplication without trial division,”
Math. of Computation, vol. 44, no. 170, pp. 519-521, April 1985.

[2] A. Tenca and Ç. Koç, “A scalable architecture for modular multipli-
cation based on Montgomery’s algorithm,” IEEE Trans. Computers,
vol. 52, no. 9, Sept. 2003, pp. 1215-1221.

[3] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An
improved unified scalable radix-2 Montgomery multiplier,” Proc. 17th
IEEE Symp. Computer Arithmetic, pp. 172-178, 2005.

[4] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4 modu-
lar multiplier design using recoding techniques,” Proc. Asilomar
Conf. Signals, Systems, and Computers, pp. 1445-1450, 2003.

[5] A. Tenca, G. Todorov, and Ç. Koç, “High-radix design of a scalable
modular multiplier,” Cryptographic Hardware and Embedded Sys-
tems, Ç. Koç and C. Paar, eds., 2001, Lecture Notes in Computer Sci-
ence, No. 1717, pp. 189-206, Springer, Berlin, Germany.

[6] Y. Fan, X. Zeng, Y. Yu, G. Wang, and Q. Zhang, “A modified high-
radix scalable Montgomery multiplier,” Proc. Intl. Symp. Circuits and
Systems, pp. 3382-3385, 2006.

[7] K. Kelley and D. Harris, “Parallelized very high radix scalable Mont-
gomery multipliers,” Proc. Asilomar Conf. Signals, Systems, and
Computers, pp. 1196-1200, Nov. 2005.

[8] K. Kelley and D. Harris, “Very high radix scalable Montgomery mul-
tipliers,” Proc. 5th Intl. Workshop on System-on-Chip,
pp. 400-404, July 2005.

[9] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic,
pp. 193-199, July 1995.

[10] T. Blum and C. Paar, “High-radix Montgomery multiplication on
reconfigurable hardware,” IEEE Trans. Computers, vol. 50, no. 7,
July 2001, pp. 759-764.

[11] C. Walter, “Montgomery exponentiation needs no final subtractions,”
Electronics Letters, vol. 35, no. 21, pp. 1831-1832,
14 October 1999.

[12] G. Hachez and J. Quisquater, “Montgomery exponentiation with no
final subtractions: improved results,” Lecture Notes in Computer Sci-
ence, C. Koç and C. Paar, eds., vol. 1965, pp. 293-301, 2000.

[13] N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgom-
ery multipliers,” Proc. 20th SBCCI Conf. on Integrated Circuits and
Systems Design, pp. 306-311, 2007.

[14] N. Jiang and D. Harris, “Parallelized Radix-2 Scalable Montgomery
Multiplier,” IFIP Intl. Conf. on VLSI, 2007.

Table II. Comparison of modular exponentiation times

Description Ref Technology Freq
(MHz)

w v
(radix-2v)

p LUTs REGs n T
(ms)

256 0.35 16 3079 2048
1024 18
256 0.38 32 4997 4051
1024 9.4
256 0.45

Parallel
radix-4
scalable

This
work

Xilinx
XC2V2000-06

248

16 2

64 8428 7543
1024 5.4
256 0.33 16 2996 1955
1024 17
256 0.36 32 5916 3863
1024 8.7
256 0.42

Parallel
radix-4
scalable

[13] Xilinx
XC2V2000-06

266 16 2

64 11684 7642
1024 5.1
256 0.52 16 1575 1189
1024 28

256 0.66

Parallel
radix-2
scalable

[14] Xilinx
XC2V2000-06

318 16 1

64 6006 4597
1024 8.0

256 0.55 16 1408 1205

1024 30

256 0.62

Improved
radix-2
scalable

[3]

Xilinx
XC2V2000-06

285

16 1

64 6317 4844

1024 8.4

Table I. Comparison of FPGA resource usage and clock speed

Architecture Reference w v 4-input
LUTs
/ PE

Registers
/ PE

16 x 16
Mults
/ PE

Critical Path Clock
Speed
(Mhz)

4 2 35 45 0
8 2 66 69 0

Parallel radix-4 scalable This work

16 2 132 120 0

 2CSA + BUF + MUX + REG 248

Parallel radix-4 scalable [13] 16 2 187 121 0 2CSA + BUF + MUX + REG 266
Parallel radix-2 scalable [14] 16 1 94 72 0 AND + 2CSA + BUF + REG 318
Improved
radix-2 scalable

[3] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285

Tenca-Koç
radix-2 scalable

[2] 16 1 95 72 0 2AND + 2CSA + BUF + MUX + REG 285

