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Abstract— This paper proposes two parallelized radix-4 
scalable Montgomery multiplier implementations.  The designs 
do not require precomputed hard multiples of the operands, but 
instead uses Booth encoding to compute products.  The designs 
use a novel method for propagating the sign bits for negative 
partial products.  The first design right shifts operands to reduce 
critical path length when using Booth encoding.  The second 
design left shifts operands to improve latency between processing 
elements and to decrease hardware usage.  An FPGA 
implementation of the right-shifting design consumes 17% more 
lookup tables (LUTs) and 25% to 33% more flip-flops than a 
comparable non-Booth encoded design.  It performs 1024-bit 
modular exponentiation in 9.1 ms using 5959 LUTs and 5079 flip-
flops.  The left-shifting design consumes 3% fewer LUTs and 
29% to 33% fewer REGs than non-Booth.  Its clock speed is 25% 
slower than non-Booth, and it performs 1024-bit modular 
exponentiation in 13 ms using 4852 LUTs and 2887 flip-flops.   

I. INTRODUCTION 
Public key encryption schemes, including RSA, use 

modular exponentiation of large numbers to encrypt data. This 
is secure because factoring large numbers is computationally 
intensive and becomes intractable for very large numbers. 
Modular exponentiation of large numbers is slow because of 
repeated modular multiplications with division steps to 
calculate the remainder. Montgomery multipliers [1] are useful 
because they replace the costly division with a simple right 
shift. Hence, they can increase the speed of encryption systems. 

Older Montgomery multipliers are hard-wired to support a 
particular operand length, n.  Scalable Montgomery multipliers 
reuse w-bit processing elements (PEs) many times to handle the 
entire n-bit operands, making them suitable to arbitrary-length 
operands [2].  Previous scalable Montgomery multiplier 
designs include radix-2 [2, 3], radix-4 [4, 5, 6], radix-8 [7], 
radix-16 [8], and very high radix [9, 10].  A scalable radix-2v 
design processes v bits of the multiplier and w bits of the 
multiplicand per step. 

Conventional scalable Montgomery multipliers right-shift 
the result after each PE.  This leads to two-cycle latency 
between PEs.  By left-shifting the operands rather than right-
shifting the result, the latency can be reduced to nearly one 
cycle at the expense of a small increase in the number of 
iterations through the PEs [3]. 

The critical path through a PE can be shortened by 
reordering the steps of the Montgomery multiplication 
algorithm, which parallelizes multiplications within the PE [11, 

9, 8].  The authors recently proposed a radix-4 multiplier [5, 6] 
that extends the parallelized radix-2 design of [12] to consume 
twice as many bits of the multiplier per step.  For short 
operands the multiplier was nearly twice as fast as the radix-2 
design and comparable for long ones.  However, this design 
required precomputed 3Y and M̂3 multiples, which requires a 
carry propagate adder (CPA).  Another previous radix-4 design 
[4] uses Booth encoding [13] to eliminate these multiples, but it 
did not use the parallelization technique. 

This paper improves the Booth-encoded radix-4 design [4] 
with parallelization to shorten the critical path. Two designs are 
presented, one right-shifting and one left-shifting.  As 
compared to [6], the left-shifting design avoids the need for 
precomputed multiples and has comparable performance for 
long multiplications.  However, the right-shifting is slower for 
short multiplications and requires more flip-flops to pipeline 
the results and more LUTs for Booth encoding.  The 
left-shifting design has a much longer critical path, resulting in 
slow performance.  But, it consumes comparable LUTs and 
fewer flip-flops and thus may be beneficial if clock speed is 
externally constrained. 

II. BOOTH ENCODING 
Consider a multiplication X×Y, where X and Y are an 

arbitrary length.  For a radix-4 multiplication algorithm, 2 bits 
of X are consumed per step.  The possible multiples of Y per 
step are then 0, Y, 2Y, or 3Y.  Without precomputed multiples, 
the only available multiples are 0 and 1Y.  Computing 2Y is a 
trivial shift, but 3Y traditionally requires an adder to sum Y and 
2Y.  Booth encoding is a technique to compute the 3Y without 
an additional adder by using negative partial-products [12].  
Note that on the next step of radix-4 multiplication, a multiple 
of Y becomes 4Y because the next two bits of X are being 
processed.  Observe that 

 
3Y = 4Y – Y 

 
and hence a 3Y multiple may be generated with a –Y in the 

TABLE I.  RADIX-4 BOOTH ENCODING 

x2i+1 x2i x2i-1 Partial Product 
0 0 0 0 
0 0 1 Y 
0 1 0 Y 
0 1 1 2Y 
1 0 0 -2Y 
1 0 1 -Y 
1 1 0 -Y 
1 1 1 0 



current step and a 4Y in the next step.  Booth encoding, 
summarized in Table I, examines the current bits of X and the 
previous most significant bit of X to add negative and extra 
multiples of Y, avoiding hard 3Y multiples.  The index i refers 
to the current two-bit word of X. 

III. MONTGOMERY MULTIPLICATION 
The section below summarizes Montgomery multiplication, 

based on the treatment from [5, 6].  Montgomery multiplication 
is defined as 

MXYRZ mod)( 1−=  
where 

 X: n-bit multiplier 
 Y:  n-bit multiplicand 
M:  n-bit odd modulus, typically prime 

  R: 2n   
  R-1: modular multiplicative inverse of R 
  (RR-1) mod M = 1 

 
The steps of Montgomery multiplication are shown in 

Fig. 1.  Because nR 2= , dividing by R is equivalent to shifting 
right by n bits.  Q has the property that the lower n bits of 
[Z + Q × M] are 0.  Hence, no information is lost during the 
reduction step. 

The algorithm involves three dependent multiplications.  
Orup showed that it can be sped up by reordering steps and 
doing a precomputation, to eliminate one of the multiplications 
and to allow the other two to occur in parallel [10].   

Note that we can also skip the normalization step for 
successive Montgomery multiplications because if R > 4M and 
X, Y < 2M then Z < 2M [10, 11, 12, 13].  To do this we 
increased the size of the operands to n1 = n + 1 bits and let 
R = 22 n , where n2 = n + 2. 

A. Parallelized Radix-4 Scalable Booth Algorithm 
The parallelized radix-4 scalable Booth algorithm, shown in 

Fig. 2, is a modification of the parallelized radix-4 scalable 
non-Booth algorithm [5, 6].  Parallel radix-2v algorithms 
require extending the operands by another v bits.  The variables 
are defined below. 

 n1: n + v + 1 
 n2: n + v + 2 (or larger; see Section IV) 
 M: n-bit odd modulus 
 M’: n2-bit integer satisfying 12mod)'( 2 =− nMM  

 M̂ : n-bit integer vv MM 2/)1)2mod'(( +×  
 Y: n1-bit multiplicand 
 X: n1-bit multiplier 
 C: 2-bit carry 
 w: scalable inner word length 
 f: outer loop length ⎡ ⎤vn /2  

 e: inner loop length ⎡ ⎤wn /1  

As with the previous radix-4 design, the precomputed M̂ is 
used so that no multiplication is needed to calculate Q.  The 
algorithm is scalable because it iterates over words of the 
operands using fixed-sized PEs.  The superscripts denote 2-bit 
words for X and w-bit words for Y, M̂ , and Z.  There are 

⎡ ⎤wne /1=  w-bit words Y, M̂ , and Z, and ⎡ ⎤2/2nf =  2-bit 
words of X in a radix-4 design with w-bit PEs. 

Encoding is indicated by the Booth() function.  A 4 M̂  
multiple must be added to the result at the end of the algorithm 
if the last Booth encoding for MQ ˆ×  was negative.  This is not 
needed for YX ×  because X < 2M and 1

1
−fX  is the n2 = n + 4 

bit of X, which will always be zero. 

IV. HARDWARE IMPLEMENTATION 
As Tenca proposed [2], the scalable Montgomery multiplier 

is built from a systolic array of processing elements (PEs), as 
shown in Fig. 3.  The architecture includes memories for X, Y, 
and M̂ , a FIFO to store partial products, and a sequence 
controller.  The FIFO holds results of the last PE until the first 
PE has completed processing the current operand.  Like 
previous designs [5, 6, 12], this architecture needs to propagate 
words of Q between PEs and in the FIFO.  Bold lines in Fig. 3 
indicate variables in carry-save redundant form.  Only the large 
operand buses are drawn between PEs.  The last 4 M̂  multiple 
is added in the FIFO before storing the result. 

The authors have previously used left-shifting [5, 6] to 
reduce the cycle count for short multiplies and to save pipeline 
flip-flops.  With Booth encoding, this technique adds 
complexity because Z is stored in redundant form, as explained 
below. 
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Fig. 2.  Parallelized radix-4 scalable Booth algorithm 

 

Multiply: Z = X ×Y  

Reduce: Q = Z × M ' mod R  

RMQZZ /][ ×+=  

Normalize: if Z ≥ M  then Z = Z − M  
Fig.1  Montgomery multiplication algorithm 



A. Right-shifting Processing Element 
The parallelized radix-4 right-shifting Booth processing 

element design is shown in Fig. 4.  Each PE receives a different 
2-bit word of X, so each PE is assigned a different iteration of 
the outer loop of the radix-4 algorithm.  For a kernel with p 
PEs, k = ⎡ ⎤pf /  pipeline cycles are needed to process all of X.  
The PEs also receive w bits of Y, M̂ , and Z in each clock 
cycle.  Hence each PE requires e cycles to process all iterations 
of the inner loop.    

In one pipeline cycle, 2p bits of X are processed.   Like the 
previous designs [5, 6, 12], we ensure that the final result is 
always taken from the last PE in the kernel to simplify the 
hardware design.  For this to be true, 422 +≥= npkn , where 
k is an integer number of pipeline cycles. 

Booth encoding is implemented with a pair of Booth 
encoders and Booth selectors.  Booth encoders take the 
multiplier’s current word and the most significant bit of the 
multiplier’s previous word, and output control signals to the 
Booth selector.  In our implementation, the control signals are 
positive (Y or 2Y), negative (-Y or -2Y), and double (2Y or -2Y).  
If the partial product is to be 0Y, positive and negative are both 
0.  The Booth selector is essentially a 5-input multiplexer with 

inverters on two of its inputs, used to select between -2Y, -Y, 0, 
Y, or 2Y.  A negative partial product is in two’s complement 
form, so a one must be added to the LSB of the inverted and 
shifted multiplicand.  This is done in the carry-save adders 
(CSAs), and will be described below.  We label the negative 
signals SX and SQ, for the ji YX ×  and ji MQ ˆ×  partial 
products, respectively. 

Each PE contains two w-bit Booth selectors, two w-bit 3:2 
CSAs, 8 w-bit registers, a 2-bit CPA, two Booth encoders, and 
a small amount of other logic.  Z is represented in carry-save 
redundant form for speed.  Because this algorithm shifts Z right 
two bits before each step, there is a two-cycle latency within 
each PE to allow the next word of Z to be shifted into the two 
MSBs of the current word.  This doubles the number of 
registers from the 4w that would be required for a left-shifting 
design.  Because Zj is stored in redundant form, the two least 
significant bits that are discarded after each right shift may 
produce a carry-out.  A CPA is used to compute the carry-out 
H. It also converts Q to non-redundant form for the Booth 
encoder.  The CPA and Booth encoders are moved ahead of a 
pipeline register to reduce the critical path. 

The 3:2 CSAs are used to add partial products and carries to 
the shifted Zj. There are three more bits we must add in to the 
LSB of Zj: the carry-out H from the CPA and the two bits for 
the partial products to be in two’s complement form, SX and SQ.  
The carries in the feedback registers will always be zero for the 
first words.  Hence, we can multiplex the extra bits into the 
carry positions.  But, there are only two CSAs and 
consequently only two carry spots, while we need three; this 
was a key challenge in this design.  A nonparallelized design 
[4] was able to precompute SQ into jM̂ , because jM̂  was 
always odd.  However, this is not possible in the parallelized 
design with the modified modulus, which may be even.  
Instead we send SQ to the next PE, which then propagates it 
through the carry in of the CPA.  The CSAs then add in Sx and 
H for the first word and the carries, labeled CX and CQ, for the 
subsequent words.  Fig. 5 is a dot diagram summarizing this.  
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Fig. 3.  Parallelized radix-4 architecture 

 
Fig. 4.  Radix-4 right-shifting Booth Montgomery multiplier processing element 



Since SQ is added in the next PE, after all iterations have 
completed the FIFO must add SQ to Z before storing the result.   

Before Z is output to the next PE, it is shifted right and sign 
extended.  As shown in the bottom right of Fig. 4, an OR gate 
computes the sign of Z by summing the most significant bits of 
sum and carry.  A multiplexer sets or resets the least significant 
two bits of Z during the last word in a pipeline cycle. The least 
significant two bits of Z will then be shifted right into the two 
upper bits in the next PE.  

xptr is a control signal from a shift register, which goes 
high for the first word of the pipeline cycle.  It is used for 
enable inputs on some of the flops, and as select signals to the 
sign extension multiplexers.  xptr_delayed is xptr delayed by 
one cycle.  Because xptr comes from a shift register, 
xptr_delayed does not consume extra registers. 

B. Left-shifting Processing Element 
The parallelized radix-4 left-shifting Booth processing 

element is shown in Fig. 6.  It is similar to the right-shifting 
design, but removes the registers needed for two cycle latency.   

In left-shifting, the lowest word of Z needs to be discarded 
when it is no longer used. Therefore, it must be converted to 
non-redundant form to determine if a carry is generated before 
discarding it.  [6] did this by relying on CSAs to propagate 
carries within words.  In this design, carries are propagated 
with the hidden bit H, which uses a CPA to process two bits of 
Z into non-redundant form per step.   

As the operands are shifted left, their least significant bits 
become zero.  As a result, the effective LSB changes, creating 
problems for Booth encoding, and carry injection.  For negative 
multiples (–Y/ jM̂−  or -2Y/ jM̂2− ), the LSBs are inverted, 
making them all 1.  Since the 2 effective LSBs of Z are zeroed 
each cycle, adding a negative multiple to Z will cause the 
actual LSBs of Z to be non-zero, preventing the discarding of 
the word.  This is fixed by adding AND gates and multiplexers 
to select which bit is treated as the LSB of Z.  The index pos in 
the figure indicates the effective LSB, which is PE dependent.  

Thus, SQ, SX, and H are added in the same effective positions as 
the right-shifting design except shifted left by pos bits. 

AND gates at the output of the Booth selectors zero any 
gates below the LSB for the first word.  Similarly, AND gates 
for Z at the input to the first CSA reset the two bits below pos 
so that carries are not added twice, once from H and once from 
the CSAs.  discardword is similar to xptr_delayed, except it 
occurs the cycle before xptr instead of the cycle after and only 
on PEs which discard words of Z. 

C. Latencies 
There are two cases for the time between pipeline cycles.  

Case I occurs when the PEs are used continuously, thus e 
cycles per pipeline cycle for right shifting. Case II occurs when 
the first PE must wait for the result from the last PE.  For the 
first word to transverse through all of the PEs, lp cycles are 
needed where l is the cycle latency between PEs (2 for right 
shiting, 1 for left shifting).  Lastly, an extra b cycles are needed 
due to latency through the FIFO.  Therefore, Case II is lp + b 
cycles per pipeline cycle in right shifting. 

Fig. 7 shows a hardware pipeline diagram of the right-
shifting design.  The diagram assumes the minimum FIFO 
cycle latency b = 1.  Case I is shown on the left, with e = 4 and 
p = 2.  Case II is shown on the right, with e = 4 and p = 4. 

Because k pipeline cycles are needed to process all bits of 
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Fig. 5.  Dot diagram of intermediate results in processing elements 

 
Fig. 6.  Radix-4 left-shifting Booth Montgomery multiplier processing element. 



X, k(e) total cycles are needed in Case I for Montgomery 
multiplication.  Let Tc denote the clock cycle period.  The total 
time for Montgomery multiplication for right shifting is then 

 
cTekT )(1 =  for blpe +≥  

 
In Case II, k(lp + b) total cycles are needed for 

Montgomery multiplication.  Hence, the total Montgomery 
multiplication time for right shifting is 

 
cTblpkT )(2 +=  for blpe +<  
 

Let m = vwp be a metric for the amount of hardware in the 
multiplier [5, 6].  We can rewrite the above delays in terms of 
the design parameters n, w, v, p, l, and m, and drop the low 
order terms, so that the approximate number of cycles is 

 
mnd /2

1 =  for lwpn ≥  
vnld /2 =  for lwpn <  

 
Hence, for Case I the time required for Montgomery 

multiplication decreases linearly with amount of hardware in 
the multiplier.  For Case II, where operand lengths are short 
compared to the hardware available, the time reaches a 
minimum beyond which no more hardware helps. 

In the left-shifting design, an extra word is needed for 
overflow since the lower word of Z is not discarded 
immediately.  Thus if the PEs are used continuously, e + 1 
cycles are needed per pipeline cycle.  In Case II, an extra vp/w 
cycles are needed for discarding words of Z.  Thus the number 
of cycles per pipeline cycle is lp + vp/w + b.  The total 
Montgomery multiplication times for left-shifting are then 

 
cTekT )1(1 +=   for bwvplpe ++≥+ /1  

cTbwvplpkT )/(2 ++=  for bwvplpe ++<+ /1  

V. RESULTS 
The processing elements were coded in Verilog and 

simulated in ModelSim.  Verilog for the parallelized radix-4 
Booth design, along with previous Montgomery multiplier 
designs, has been synthesized in Synplify Pro onto the Xilinx 
XC2V2000-6 Virtex II FPGA with “Sequential Optimizations” 

disabled to prevent flip-flops from being optimized into shift 
registers.  A comparison of the parallelized radix-4 scalable 
Booth designs with other Montgomery multiplier designs is 
shown in Table II.  Critical paths were obtained by 
synthesizing kernel with p = 2.  The critical path for the right-
shifting design is an inverter and 5-input multiplexer (for the 
Booth selector), two CSAs, a 2-input multiplexer, and a 
register.  This limits the clock speed to 248 MHz for w = 8 and 
16.  The critical path for the left-shifting design adds a booth 
encoder, multiplexer, and an AND gate.  This decreases the 
clock speed to 186 MHz for w = 16.   

A comparison of hardware usage and exponentiation time 
for the parallelized radix-4 Booth designs with others is shown 
in Table III.  The data includes the hardware in the kernel and 
controller, but not RAM bits or logic in the memories and 
FIFO (which are roughly the same for all designs).  The 
modular exponentiation time is the time for 2n+2 Montgomery 
multiplies. 

When the parallelized radix-4 scalable right-shifting Booth 
design is compared to the non-Booth design, there are 19% 
more LUTs and 25% more REGs in the w = 16, p = 32 case.  
The non-Booth designs [5, 6] had 4w registers to hold Y, M̂ , 
3Y, and M̂3 , and 2w registers to hold Z in redundant form, for 
a total 6w registers (plus some overhead).  Because of the extra 
cycle of latency to shift Z right, the Booth design needs a pair 
of 4w registers for Y, M̂ , and Z, for a total of 8w registers.  
Therefore, for large w, the right-shifting Booth design using 
8w/6w = 1.33 or 33% more registers than non-Booth.  Its clock 
speed is identical to non-Booth. 

The left-shifting design has 4w registers and approximately  
33% fewer registers than non-Booth.  In the w = 16, p = 32 
case, it consumes 3% fewer LUTs and 29% fewer registers 
than non-Booth.  However, the left-shifting Booth design’s 
clock speed is 25% slower than non-Booth because of the 
longer critical path.   

The right-shifting Booth design can complete a long (1024-
bit) exponentiation in 9.1 ms, about the same speed as non-
Booth.  For a short (256-bit) exponentiation, the right-shifting 
Booth design needs twice the amount of time compared to the 
left-shifting non-Booth design because of the two cycle latency 
within PEs.  The left-shifting design’s long exponentiation time 
increases to 13 ms because of slower clock speed.  However, 
its short exponentiation time decreases to 0.52 ms because of 
the one cycle latency within PEs.  This is still slower than the 
0.38 ms time for non-Booth, but it consumes less hardware. 

VI. CONCLUSIONS 
This paper described two parallelized scalable radix-4 

Montgomery multiplier designs that uses Booth encoding to 
eliminate the precomputed 3Y/ M̂3  multiples of the previous 
parallelized radix-4 design [5], making the design beneficial for 
modular exponentiation implementations. Left-shifting and 
right-shifting Booth designs were compared.  Because of the 
parallelized design, previous methods [4] of adding sign bits 
used for Booth encoding do not work. Instead, the design 
propagates a bit using the carry-in of a 2-bit CPA. Right-
shifting decreases the critical path length when compared to 
[4], but increases the number of flip-flops used when compared 
to [6].  The design consumes about 19% more LUTs and 25% 

 
Fig. 7.  Pipeline diagram for right shifting parallelized radix-4 Booth 

processing element 



to 33% more registers, and performs modular exponentiations 
in comparable time to a non-Booth encoded radix-4 design [6] 
for long multiplies.  Left-shifting uses comparable LUTs and 
29% to 33% fewer flip-flops, but is 25% slower, than non-
Booth.  If cycle time is limited by other system elements, the 
left-shifting radix-4 Booth-encoded design offers the lowest 
hardware cost and requires no precomputed multiples while 
offering latency comparable to the best alternative. 
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TABLE  II.   COMPARISON OF PE FPGA RESOURCE USAGE AND CLOCK SPEED 
 

Architecture Ref. Shift 
Dir. 

w v 4-input 
LUTs/
PE 

Registers 
/PE 

Critical Path Clock 
Speed 
(Mhz) 

4 2 50 49 259 
8 2 91 87 249 

Parallel radix-4 scalable Booth This work R 

16 2 154 149 

INV + MUX5 + 2CSA + MUX2 + REG 

248 
4 2 54 41 216 
8 2 102 60 213 

Parallel radix-4 scalable Booth This work L 

16 2 176 89 

ENC + INV + MUX5 + 2CSA + AND + 
2MUX2 + REG 

186 
Parallel radix-4 scalable non-Booth [6] L 16 2 132 120 2CSA + BUF + MUX4 + REG 248 
Parallel radix-2 scalable [12] L 16 1 94 72 AND + 2CSA + BUF + REG 318 
Improved radix-2 scalable [3] L 16 1 95 72 2AND + 2CSA + BUF + MUX2 + REG 285 

 
TABLE III.   COMPARISON OF MODULAR EXPONENTIATION TIMES AND TOTAL FPGA RESOURCE USAGE 

 
Architecture Ref. Freq Shift 

Dir. 
w v p LUTs REGs n T (ms) 

256 0.62 16 3069 2640 
1024 18 
256 0.68 32 5959 5079 
1024 9.1 
256 0.80 

Parallel radix-4 scalable Booth This 
work 

248 R 16 2 

64 11853 10292 
1024 9.7 
256 0.47 16 2469 1458 
1024 24 
256 0.52 32 4852 2887 
1024 13 
256 0.60 

Parallel radix-4 scalable Booth This 
work 

186 L 16 2 

64 9637 5690 
1024 7.2 
256 0.38 Parallel radix-4 scalable non-Booth [6] 248 L 16 2 32 4997 4051 
1024 9.4 
256 0.66 Parallel radix-2 scalable [12] 318 L 16 1 64 6006 4597 
1024 8.0 
256 0.62 Improved radix-2 scalable [3] 285 L 16 1 64 6317 4844 
1024 8.4 


