
Parallelized Booth-Encoded Radix-4
Montgomery Multipliers

Nathaniel Pinckney, Philip Amberg, and David Money Harris
Harvey Mudd College, Claremont, CA, USA

npinckney@hmc.edu

Abstract— This paper proposes two parallelized radix-4
scalable Montgomery multiplier implementations. The designs
do not require precomputed hard multiples of the operands, but
instead uses Booth encoding to compute products. The designs
use a novel method for propagating the sign bits for negative
partial products. The first design right shifts operands to reduce
critical path length when using Booth encoding. The second
design left shifts operands to improve latency between processing
elements and to decrease hardware usage. An FPGA
implementation of the right-shifting design consumes 17% more
lookup tables (LUTs) and 25% to 33% more flip-flops than a
comparable non-Booth encoded design. It performs 1024-bit
modular exponentiation in 9.1 ms using 5959 LUTs and 5079 flip-
flops. The left-shifting design consumes 3% fewer LUTs and
29% to 33% fewer REGs than non-Booth. Its clock speed is 25%
slower than non-Booth, and it performs 1024-bit modular
exponentiation in 13 ms using 4852 LUTs and 2887 flip-flops.

I. INTRODUCTION
Public key encryption schemes, including RSA, use

modular exponentiation of large numbers to encrypt data. This
is secure because factoring large numbers is computationally
intensive and becomes intractable for very large numbers.
Modular exponentiation of large numbers is slow because of
repeated modular multiplications with division steps to
calculate the remainder. Montgomery multipliers [1] are useful
because they replace the costly division with a simple right
shift. Hence, they can increase the speed of encryption systems.

Older Montgomery multipliers are hard-wired to support a
particular operand length, n. Scalable Montgomery multipliers
reuse w-bit processing elements (PEs) many times to handle the
entire n-bit operands, making them suitable to arbitrary-length
operands [2]. Previous scalable Montgomery multiplier
designs include radix-2 [2, 3], radix-4 [4, 5, 6], radix-8 [7],
radix-16 [8], and very high radix [9, 10]. A scalable radix-2v
design processes v bits of the multiplier and w bits of the
multiplicand per step.

Conventional scalable Montgomery multipliers right-shift
the result after each PE. This leads to two-cycle latency
between PEs. By left-shifting the operands rather than right-
shifting the result, the latency can be reduced to nearly one
cycle at the expense of a small increase in the number of
iterations through the PEs [3].

The critical path through a PE can be shortened by
reordering the steps of the Montgomery multiplication
algorithm, which parallelizes multiplications within the PE [11,

9, 8]. The authors recently proposed a radix-4 multiplier [5, 6]
that extends the parallelized radix-2 design of [12] to consume
twice as many bits of the multiplier per step. For short
operands the multiplier was nearly twice as fast as the radix-2
design and comparable for long ones. However, this design
required precomputed 3Y and M̂3 multiples, which requires a
carry propagate adder (CPA). Another previous radix-4 design
[4] uses Booth encoding [13] to eliminate these multiples, but it
did not use the parallelization technique.

This paper improves the Booth-encoded radix-4 design [4]
with parallelization to shorten the critical path. Two designs are
presented, one right-shifting and one left-shifting. As
compared to [6], the left-shifting design avoids the need for
precomputed multiples and has comparable performance for
long multiplications. However, the right-shifting is slower for
short multiplications and requires more flip-flops to pipeline
the results and more LUTs for Booth encoding. The
left-shifting design has a much longer critical path, resulting in
slow performance. But, it consumes comparable LUTs and
fewer flip-flops and thus may be beneficial if clock speed is
externally constrained.

II. BOOTH ENCODING
Consider a multiplication X×Y, where X and Y are an

arbitrary length. For a radix-4 multiplication algorithm, 2 bits
of X are consumed per step. The possible multiples of Y per
step are then 0, Y, 2Y, or 3Y. Without precomputed multiples,
the only available multiples are 0 and 1Y. Computing 2Y is a
trivial shift, but 3Y traditionally requires an adder to sum Y and
2Y. Booth encoding is a technique to compute the 3Y without
an additional adder by using negative partial-products [12].
Note that on the next step of radix-4 multiplication, a multiple
of Y becomes 4Y because the next two bits of X are being
processed. Observe that

3Y = 4Y – Y

and hence a 3Y multiple may be generated with a –Y in the

TABLE I. RADIX-4 BOOTH ENCODING

x2i+1 x2i x2i-1 Partial Product
0 0 0 0
0 0 1 Y
0 1 0 Y
0 1 1 2Y
1 0 0 -2Y
1 0 1 -Y
1 1 0 -Y
1 1 1 0

current step and a 4Y in the next step. Booth encoding,
summarized in Table I, examines the current bits of X and the
previous most significant bit of X to add negative and extra
multiples of Y, avoiding hard 3Y multiples. The index i refers
to the current two-bit word of X.

III. MONTGOMERY MULTIPLICATION
The section below summarizes Montgomery multiplication,

based on the treatment from [5, 6]. Montgomery multiplication
is defined as

MXYRZ mod)(1−=
where

 X: n-bit multiplier
 Y: n-bit multiplicand
M: n-bit odd modulus, typically prime

 R: 2n
 R-1: modular multiplicative inverse of R
 (RR-1) mod M = 1

The steps of Montgomery multiplication are shown in

Fig. 1. Because nR 2= , dividing by R is equivalent to shifting
right by n bits. Q has the property that the lower n bits of
[Z + Q × M] are 0. Hence, no information is lost during the
reduction step.

The algorithm involves three dependent multiplications.
Orup showed that it can be sped up by reordering steps and
doing a precomputation, to eliminate one of the multiplications
and to allow the other two to occur in parallel [10].

Note that we can also skip the normalization step for
successive Montgomery multiplications because if R > 4M and
X, Y < 2M then Z < 2M [10, 11, 12, 13]. To do this we
increased the size of the operands to n1 = n + 1 bits and let
R = 22 n , where n2 = n + 2.

A. Parallelized Radix-4 Scalable Booth Algorithm
The parallelized radix-4 scalable Booth algorithm, shown in

Fig. 2, is a modification of the parallelized radix-4 scalable
non-Booth algorithm [5, 6]. Parallel radix-2v algorithms
require extending the operands by another v bits. The variables
are defined below.

 n1: n + v + 1
 n2: n + v + 2 (or larger; see Section IV)
 M: n-bit odd modulus
 M’: n2-bit integer satisfying 12mod)'(2 =− nMM

 M̂ : n-bit integer vv MM 2/)1)2mod'((+×
 Y: n1-bit multiplicand
 X: n1-bit multiplier
 C: 2-bit carry
 w: scalable inner word length
 f: outer loop length ⎡ ⎤vn /2

 e: inner loop length ⎡ ⎤wn /1

As with the previous radix-4 design, the precomputed M̂ is
used so that no multiplication is needed to calculate Q. The
algorithm is scalable because it iterates over words of the
operands using fixed-sized PEs. The superscripts denote 2-bit
words for X and w-bit words for Y, M̂ , and Z. There are

⎡ ⎤wne /1= w-bit words Y, M̂ , and Z, and ⎡ ⎤2/2nf = 2-bit
words of X in a radix-4 design with w-bit PEs.

Encoding is indicated by the Booth() function. A 4 M̂
multiple must be added to the result at the end of the algorithm
if the last Booth encoding for MQ ˆ× was negative. This is not
needed for YX × because X < 2M and 1

1
−fX is the n2 = n + 4

bit of X, which will always be zero.

IV. HARDWARE IMPLEMENTATION
As Tenca proposed [2], the scalable Montgomery multiplier

is built from a systolic array of processing elements (PEs), as
shown in Fig. 3. The architecture includes memories for X, Y,
and M̂ , a FIFO to store partial products, and a sequence
controller. The FIFO holds results of the last PE until the first
PE has completed processing the current operand. Like
previous designs [5, 6, 12], this architecture needs to propagate
words of Q between PEs and in the FIFO. Bold lines in Fig. 3
indicate variables in carry-save redundant form. Only the large
operand buses are drawn between PEs. The last 4 M̂ multiple
is added in the FIFO before storing the result.

The authors have previously used left-shifting [5, 6] to
reduce the cycle count for short multiplies and to save pipeline
flip-flops. With Booth encoding, this technique adds
complexity because Z is stored in redundant form, as explained
below.

0=Z
 for 0=i to 1−f
 20 2modZQi =

),(1
1

' −= iii QQBoothQ
),(1

1
' −= iii XXBoothX

 0=C
 for 0=j to 1−e
 jijij

w
jj YXMQCZZZC ×′+×′++= −
+ ˆ),(),(2:1
1

0:1

If 11

1 ==−fQ then
 0=C
 for 0=j to 1−e
 jjj MCZZC ˆ4),(++=

Fig. 2. Parallelized radix-4 scalable Booth algorithm

Multiply: Z = X ×Y

Reduce: Q = Z × M ' mod R

RMQZZ /][×+=

Normalize: if Z ≥ M then Z = Z − M
Fig.1 Montgomery multiplication algorithm

A. Right-shifting Processing Element
The parallelized radix-4 right-shifting Booth processing

element design is shown in Fig. 4. Each PE receives a different
2-bit word of X, so each PE is assigned a different iteration of
the outer loop of the radix-4 algorithm. For a kernel with p
PEs, k = ⎡ ⎤pf / pipeline cycles are needed to process all of X.
The PEs also receive w bits of Y, M̂ , and Z in each clock
cycle. Hence each PE requires e cycles to process all iterations
of the inner loop.

In one pipeline cycle, 2p bits of X are processed. Like the
previous designs [5, 6, 12], we ensure that the final result is
always taken from the last PE in the kernel to simplify the
hardware design. For this to be true, 422 +≥= npkn , where
k is an integer number of pipeline cycles.

Booth encoding is implemented with a pair of Booth
encoders and Booth selectors. Booth encoders take the
multiplier’s current word and the most significant bit of the
multiplier’s previous word, and output control signals to the
Booth selector. In our implementation, the control signals are
positive (Y or 2Y), negative (-Y or -2Y), and double (2Y or -2Y).
If the partial product is to be 0Y, positive and negative are both
0. The Booth selector is essentially a 5-input multiplexer with

inverters on two of its inputs, used to select between -2Y, -Y, 0,
Y, or 2Y. A negative partial product is in two’s complement
form, so a one must be added to the LSB of the inverted and
shifted multiplicand. This is done in the carry-save adders
(CSAs), and will be described below. We label the negative
signals SX and SQ, for the ji YX × and ji MQ ˆ× partial
products, respectively.

Each PE contains two w-bit Booth selectors, two w-bit 3:2
CSAs, 8 w-bit registers, a 2-bit CPA, two Booth encoders, and
a small amount of other logic. Z is represented in carry-save
redundant form for speed. Because this algorithm shifts Z right
two bits before each step, there is a two-cycle latency within
each PE to allow the next word of Z to be shifted into the two
MSBs of the current word. This doubles the number of
registers from the 4w that would be required for a left-shifting
design. Because Zj is stored in redundant form, the two least
significant bits that are discarded after each right shift may
produce a carry-out. A CPA is used to compute the carry-out
H. It also converts Q to non-redundant form for the Booth
encoder. The CPA and Booth encoders are moved ahead of a
pipeline register to reduce the critical path.

The 3:2 CSAs are used to add partial products and carries to
the shifted Zj. There are three more bits we must add in to the
LSB of Zj: the carry-out H from the CPA and the two bits for
the partial products to be in two’s complement form, SX and SQ.
The carries in the feedback registers will always be zero for the
first words. Hence, we can multiplex the extra bits into the
carry positions. But, there are only two CSAs and
consequently only two carry spots, while we need three; this
was a key challenge in this design. A nonparallelized design
[4] was able to precompute SQ into jM̂ , because jM̂ was
always odd. However, this is not possible in the parallelized
design with the modified modulus, which may be even.
Instead we send SQ to the next PE, which then propagates it
through the carry in of the CPA. The CSAs then add in Sx and
H for the first word and the carries, labeled CX and CQ, for the
subsequent words. Fig. 5 is a dot diagram summarizing this.

PE 1 PE 2 PE 30
Mem

X Mem

PE p

Sequence
Controller

Result

Z

x

Kernel

FIFO

M
Y

M
Y

Fig. 3. Parallelized radix-4 architecture

Fig. 4. Radix-4 right-shifting Booth Montgomery multiplier processing element

Since SQ is added in the next PE, after all iterations have
completed the FIFO must add SQ to Z before storing the result.

Before Z is output to the next PE, it is shifted right and sign
extended. As shown in the bottom right of Fig. 4, an OR gate
computes the sign of Z by summing the most significant bits of
sum and carry. A multiplexer sets or resets the least significant
two bits of Z during the last word in a pipeline cycle. The least
significant two bits of Z will then be shifted right into the two
upper bits in the next PE.

xptr is a control signal from a shift register, which goes
high for the first word of the pipeline cycle. It is used for
enable inputs on some of the flops, and as select signals to the
sign extension multiplexers. xptr_delayed is xptr delayed by
one cycle. Because xptr comes from a shift register,
xptr_delayed does not consume extra registers.

B. Left-shifting Processing Element
The parallelized radix-4 left-shifting Booth processing

element is shown in Fig. 6. It is similar to the right-shifting
design, but removes the registers needed for two cycle latency.

In left-shifting, the lowest word of Z needs to be discarded
when it is no longer used. Therefore, it must be converted to
non-redundant form to determine if a carry is generated before
discarding it. [6] did this by relying on CSAs to propagate
carries within words. In this design, carries are propagated
with the hidden bit H, which uses a CPA to process two bits of
Z into non-redundant form per step.

As the operands are shifted left, their least significant bits
become zero. As a result, the effective LSB changes, creating
problems for Booth encoding, and carry injection. For negative
multiples (–Y/ jM̂− or -2Y/ jM̂2−), the LSBs are inverted,
making them all 1. Since the 2 effective LSBs of Z are zeroed
each cycle, adding a negative multiple to Z will cause the
actual LSBs of Z to be non-zero, preventing the discarding of
the word. This is fixed by adding AND gates and multiplexers
to select which bit is treated as the LSB of Z. The index pos in
the figure indicates the effective LSB, which is PE dependent.

Thus, SQ, SX, and H are added in the same effective positions as
the right-shifting design except shifted left by pos bits.

AND gates at the output of the Booth selectors zero any
gates below the LSB for the first word. Similarly, AND gates
for Z at the input to the first CSA reset the two bits below pos
so that carries are not added twice, once from H and once from
the CSAs. discardword is similar to xptr_delayed, except it
occurs the cycle before xptr instead of the cycle after and only
on PEs which discard words of Z.

C. Latencies
There are two cases for the time between pipeline cycles.

Case I occurs when the PEs are used continuously, thus e
cycles per pipeline cycle for right shifting. Case II occurs when
the first PE must wait for the result from the last PE. For the
first word to transverse through all of the PEs, lp cycles are
needed where l is the cycle latency between PEs (2 for right
shiting, 1 for left shifting). Lastly, an extra b cycles are needed
due to latency through the FIFO. Therefore, Case II is lp + b
cycles per pipeline cycle in right shifting.

Fig. 7 shows a hardware pipeline diagram of the right-
shifting design. The diagram assumes the minimum FIFO
cycle latency b = 1. Case I is shown on the left, with e = 4 and
p = 2. Case II is shown on the right, with e = 4 and p = 4.

Because k pipeline cycles are needed to process all bits of

Z

XY

PE i, Word 2

CX

QM

PE i, Word 1

Z

XY

SX

QM

H

C
S

A
1

C
S

A
2

CQ

Fig. 5. Dot diagram of intermediate results in processing elements

Fig. 6. Radix-4 left-shifting Booth Montgomery multiplier processing element.

X, k(e) total cycles are needed in Case I for Montgomery
multiplication. Let Tc denote the clock cycle period. The total
time for Montgomery multiplication for right shifting is then

cTekT)(1 = for blpe +≥

In Case II, k(lp + b) total cycles are needed for

Montgomery multiplication. Hence, the total Montgomery
multiplication time for right shifting is

cTblpkT)(2 += for blpe +<

Let m = vwp be a metric for the amount of hardware in the
multiplier [5, 6]. We can rewrite the above delays in terms of
the design parameters n, w, v, p, l, and m, and drop the low
order terms, so that the approximate number of cycles is

mnd /2

1 = for lwpn ≥
vnld /2 = for lwpn <

Hence, for Case I the time required for Montgomery

multiplication decreases linearly with amount of hardware in
the multiplier. For Case II, where operand lengths are short
compared to the hardware available, the time reaches a
minimum beyond which no more hardware helps.

In the left-shifting design, an extra word is needed for
overflow since the lower word of Z is not discarded
immediately. Thus if the PEs are used continuously, e + 1
cycles are needed per pipeline cycle. In Case II, an extra vp/w
cycles are needed for discarding words of Z. Thus the number
of cycles per pipeline cycle is lp + vp/w + b. The total
Montgomery multiplication times for left-shifting are then

cTekT)1(1 += for bwvplpe ++≥+ /1

cTbwvplpkT)/(2 ++= for bwvplpe ++<+ /1

V. RESULTS
The processing elements were coded in Verilog and

simulated in ModelSim. Verilog for the parallelized radix-4
Booth design, along with previous Montgomery multiplier
designs, has been synthesized in Synplify Pro onto the Xilinx
XC2V2000-6 Virtex II FPGA with “Sequential Optimizations”

disabled to prevent flip-flops from being optimized into shift
registers. A comparison of the parallelized radix-4 scalable
Booth designs with other Montgomery multiplier designs is
shown in Table II. Critical paths were obtained by
synthesizing kernel with p = 2. The critical path for the right-
shifting design is an inverter and 5-input multiplexer (for the
Booth selector), two CSAs, a 2-input multiplexer, and a
register. This limits the clock speed to 248 MHz for w = 8 and
16. The critical path for the left-shifting design adds a booth
encoder, multiplexer, and an AND gate. This decreases the
clock speed to 186 MHz for w = 16.

A comparison of hardware usage and exponentiation time
for the parallelized radix-4 Booth designs with others is shown
in Table III. The data includes the hardware in the kernel and
controller, but not RAM bits or logic in the memories and
FIFO (which are roughly the same for all designs). The
modular exponentiation time is the time for 2n+2 Montgomery
multiplies.

When the parallelized radix-4 scalable right-shifting Booth
design is compared to the non-Booth design, there are 19%
more LUTs and 25% more REGs in the w = 16, p = 32 case.
The non-Booth designs [5, 6] had 4w registers to hold Y, M̂ ,
3Y, and M̂3 , and 2w registers to hold Z in redundant form, for
a total 6w registers (plus some overhead). Because of the extra
cycle of latency to shift Z right, the Booth design needs a pair
of 4w registers for Y, M̂ , and Z, for a total of 8w registers.
Therefore, for large w, the right-shifting Booth design using
8w/6w = 1.33 or 33% more registers than non-Booth. Its clock
speed is identical to non-Booth.

The left-shifting design has 4w registers and approximately
33% fewer registers than non-Booth. In the w = 16, p = 32
case, it consumes 3% fewer LUTs and 29% fewer registers
than non-Booth. However, the left-shifting Booth design’s
clock speed is 25% slower than non-Booth because of the
longer critical path.

The right-shifting Booth design can complete a long (1024-
bit) exponentiation in 9.1 ms, about the same speed as non-
Booth. For a short (256-bit) exponentiation, the right-shifting
Booth design needs twice the amount of time compared to the
left-shifting non-Booth design because of the two cycle latency
within PEs. The left-shifting design’s long exponentiation time
increases to 13 ms because of slower clock speed. However,
its short exponentiation time decreases to 0.52 ms because of
the one cycle latency within PEs. This is still slower than the
0.38 ms time for non-Booth, but it consumes less hardware.

VI. CONCLUSIONS
This paper described two parallelized scalable radix-4

Montgomery multiplier designs that uses Booth encoding to
eliminate the precomputed 3Y/ M̂3 multiples of the previous
parallelized radix-4 design [5], making the design beneficial for
modular exponentiation implementations. Left-shifting and
right-shifting Booth designs were compared. Because of the
parallelized design, previous methods [4] of adding sign bits
used for Booth encoding do not work. Instead, the design
propagates a bit using the carry-in of a 2-bit CPA. Right-
shifting decreases the critical path length when compared to
[4], but increases the number of flip-flops used when compared
to [6]. The design consumes about 19% more LUTs and 25%

Fig. 7. Pipeline diagram for right shifting parallelized radix-4 Booth

processing element

to 33% more registers, and performs modular exponentiations
in comparable time to a non-Booth encoded radix-4 design [6]
for long multiplies. Left-shifting uses comparable LUTs and
29% to 33% fewer flip-flops, but is 25% slower, than non-
Booth. If cycle time is limited by other system elements, the
left-shifting radix-4 Booth-encoded design offers the lowest
hardware cost and requires no precomputed multiples while
offering latency comparable to the best alternative.

REFERENCES
[1] P. Montgomery, “Modular multiplication without trial division,” Math.

of Computation, vol. 44, no. 170, pp. 519-521, April 1985.
[2] A. Tenca and Ç. Koç, “A scalable architecture for modular

multiplication based on Montgomery’s algorithm,” IEEE Trans.
Computers, vol. 52, no. 9, Sept. 2003, pp. 1215-1221.

[3] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An
improved unified scalable radix-2 Montgomery multiplier,” Proc. 17th
IEEE Symp. Computer Arithmetic, pp. 172-178, 2005.

[4] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4 modular
multiplier design using recoding techniques,” Proc. Asilomar Conf.
Signals, Systems, and Computers, pp. 1445-1450, 2003.

[5] N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgomery
multipliers,” Proc. 20th SBCCI Conf. on Integrated Circuits and Systems
Design, pp. 306-311, 2007.

[6] N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgomery
multipliers,” submitted to Journal of Integrated Circuits and Systems,
Feb. 2008.

[7] A. Tenca, G. Todorov, and Ç. Koç, “High--radix design of a scalable
modular multiplier,” Cryptographic Hardware and Embedded Systems,
Ç. Koç and C. Paar, eds., 2001, Lecutre notes in Computer Science,
No. 1717, pp. 189-206, Springer, Berlin, Germany.

[8] Y. Fan, X. Zeng, Y, Yu, G. Wang, and Q. Zhang, “A modified
high-radix scalable Montgomery multiplier,” Proc. Intl. Symp. Circuits
and Systems, pp. 3382-3385, 2006.

[9] K. Kelley and D. Harris, “Parallelized very high radix scalable
Montgomery multipliers,” Proc. Asilomar Conf. Signals, Systems, and
Computers, pp. 1196-1200, Nov. 2005.

[10] K. Kelley and D. Harris, “Very high radix scalable Montgomery
multipliers,” Proc. 5th Intl. Workshop on System-on-Chip, pp. 400-404,
July 2005.

[11] H. Orup, “Simplified quotient determination in high-radix modular
multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic,
pp. 193-199, July 1995.

[12] N. Jiang and D. Harris, “Parallelized Radix-2 Scalable Montgomery
Multiplier,” IFIP Intl. Conf. on VLSI, 2007.

[13] A. Booth, “A signed binary multiplication technique,” Quarterly J.
Mechanics and Applied Mathematics, vol. IV, part 2, pp. 236-240,
June 1951.

[14] T. Blum and C. Paar, “High-radix Montgomery multiplication on
reconfigurable hardware,” IEEE Trans. Computers, vol. 50, no. 7,
pp. 759-764, July 2001.

[15] C. Walter, “Montgomery exponentiation needs no final subtractions,”
Electronics Letters, vol. 35, no. 21, pp. 1831-1832, 14 October 1999.

[16] G. Hachez and J. Quisquater, “Montgomery exponentiation with no final
subtractions: improved results,” Lecture Notes in Computer Science,
Ç. Koç and C. Paar, eds., vol. 1965, pp. 293-301, 2000.

TABLE II. COMPARISON OF PE FPGA RESOURCE USAGE AND CLOCK SPEED

Architecture Ref. Shift
Dir.

w v 4-input
LUTs/
PE

Registers
/PE

Critical Path Clock
Speed
(Mhz)

4 2 50 49 259
8 2 91 87 249

Parallel radix-4 scalable Booth This work R

16 2 154 149

INV + MUX5 + 2CSA + MUX2 + REG

248
4 2 54 41 216
8 2 102 60 213

Parallel radix-4 scalable Booth This work L

16 2 176 89

ENC + INV + MUX5 + 2CSA + AND +
2MUX2 + REG

186
Parallel radix-4 scalable non-Booth [6] L 16 2 132 120 2CSA + BUF + MUX4 + REG 248
Parallel radix-2 scalable [12] L 16 1 94 72 AND + 2CSA + BUF + REG 318
Improved radix-2 scalable [3] L 16 1 95 72 2AND + 2CSA + BUF + MUX2 + REG 285

TABLE III. COMPARISON OF MODULAR EXPONENTIATION TIMES AND TOTAL FPGA RESOURCE USAGE

Architecture Ref. Freq Shift

Dir.
w v p LUTs REGs n T (ms)

256 0.62 16 3069 2640
1024 18
256 0.68 32 5959 5079
1024 9.1
256 0.80

Parallel radix-4 scalable Booth This
work

248 R 16 2

64 11853 10292
1024 9.7
256 0.47 16 2469 1458
1024 24
256 0.52 32 4852 2887
1024 13
256 0.60

Parallel radix-4 scalable Booth This
work

186 L 16 2

64 9637 5690
1024 7.2
256 0.38 Parallel radix-4 scalable non-Booth [6] 248 L 16 2 32 4997 4051
1024 9.4
256 0.66 Parallel radix-2 scalable [12] 318 L 16 1 64 6006 4597
1024 8.0
256 0.62 Improved radix-2 scalable [3] 285 L 16 1 64 6317 4844
1024 8.4

