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CHAPTER 1

Introduction

Moore’s law [1] has historically enabled increased microprocessor performance with each

technology node while maintaining constant power density. However, conventional voltage

scaling has slowed in recent years, limiting processor frequency to meet power-density con-

straints. As transistors have become leakier, it has become more difficult reduce the threshold

voltage and hence supply voltage scaling has stagnated as well in order to maintain suffi-

cient overdrive and performance [2]. This deviation from constant-field scaling theory [3],

combined with continuing scaling of transistor density has resulted in an increase in power

density (W/mm2) beyond the 130nm node, as shown in Figure 1.1.

Consequently, processor designs have added more cores without significantly increas-

ing frequency, leading to a prevalence of chip multiprocessors (CMP) [4] in contemporary

commercial architectures. However, because the number of cores has been increasing geo-

metrically with each process node while die area has remained fixed, the total chip power has

again started to increase, despite relatively flat core frequencies. In practice, the maximum

allowable power dissipation of a single die is constrained by thermal cooling limits. Hence,

the consequence of supply-voltage stagnation is a limit on the number of cores that can be

active simultaneously on a die and, thus, a limit on the attainable performance of a modern

CMP.

Recent work has observed that we are at a point where not all cores can be simultaneously

active at full voltage and clock frequency without exceeding the thermal design budget [5].

Consequently, at any given time large sections of a chip will remain inactive in order to not
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Figure 1.1: Nominal supply voltage and energy density from 250 nm to 22 nm.
Supply voltage has not scaled past 130nm, consequently energy and power density has risen
for each successive technology node.
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exceed thermal limits of the package and cooling system. This scenario, dubbed dark silicon,

has shown that the percent of chip inactivity is increasing each generation and the majority

of chip area in a CPU could be dark by as soon as 2016 [5]. As a result, the most recent

server-class CMPs incorporate extensive power-gating methods to turn off idle cores to free

the thermal budget for active cores [1]. Because modern CMP performance is now limited

by power and not die area, a paradigm shift is needed in CMP design: cores are plentiful,

but power for them is not.

To overcome the resulting energy and power dissipation barriers, energy efficiency can

be improved through aggressive voltage scaling, and there has been increased interest in

operating at near-threshold computing (NTC) supply voltages [6–14]. In this region sizable

energy gains are achieved with moderate performance loss. Lost performance, due to reduced

clock frequency from increased logic delay, can be regained by parallelizing across cores

[5, 10, 11, 15]. Thus, dark silicon becomes dim silicon [15] through lowering the supply

voltage to near-threshold and trading off single-core performance for many cores operating

in parallel at a low voltage. Near-threshold has extended beyond academic research and is

being developed by industry leaders, such as Intel [16,17] and Qualcomm [18,19].

Near-threshold computing has a wide impact on design, from algorithmic optimizations

and high-level systems architecture to circuit techniques and device-level tuning. A founda-

tional near-threshold work published in a 2010 volume of Proceedings of the IEEE [6] has

been cited by 233 publications in 6 years. These citations include numerous architectural

papers [15, 20–22], circuit papers [23, 24], OS/compiler papers [25, 26], and device papers

[27,28].

Understanding sources of energy consumption is a circuit is critical for understanding how

near-threshold improves energy efficiency. To start, energy is categorized into two main types

within a circuit: static and dynamic. Static is continuous current consumption, regardless of

circuit switching speed or frequency, due to leakage through transistors. In most CMOS logic

circuits the primary leakage path is through the source-drain nodes, though gate leakage can

also be substantial. Static energy can be expressed as

Estatic = IleakVddTtask (1.1)
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where Ileak is the leakage current, Vdd is the operating voltage, and Ttask is the time to

complete a task in which the static energy is integrated. Note that Ileak is dependent on

Vdd because of effects such as drain-induced barrier lowering (DIBL) which modulates the

threshold voltage of a device, Vt. Ileak has an inverse exponential dependence on Vt, so a

lower Vt will increase leakage current exponentially. In more recent technologies exhibiting

short-channel effects, increasing Vdd will reduce Vt because of DIBL and therefore further

increase static energy consumption beyond the linear dependence on Vdd [2].

Dynamic energy, which is essentially the ‘working’ energy of switching capacitances in a

circuit, can be expressed as

Edynamic = CV 2
dd (1.2)

where C is the capacitance that must be switched in order to complete a task. There are

many sources of capacitance in a circuit, but the main ones to consider for this analysis

are gate capacitance (capacitance of the transistor’s gate) and parasitic capacitance, which

include transistor junction capacitance and wire capacitance to interconnect logic gates. The

time or latency needed to complete the task can be modeled by the alpha power law as

Ttask =
Vdd

(Vdd − Vt)α
(1.3)

where α is historically 2 but is close to 1.3 in more recent planar technologies with bad short

channel effects [29].

A typical logic circuit, such as the datapath in a core, has a very high activity factor

meaning there is a high probability that a circuit node will switch during a given cycle. This

implies that its dynamic energy consumes the majority of power, as on any given cycle much

of the gate and parasitic capacitances are switching. As can be seen from Equation 1.2,

Edynamic has a quadratic relationship on Vdd. Considering only Edynamic, lowering Vdd can

greatly reduce Edynamic. However, as we shall see throughout this dissertation many fac-

tors, such as leakage, performance, parallelism, and variation, limit voltage scaling and the

minimum obtainable energy in a circuit.

Digital voltage and frequency scaling (DVFS) is a conventional method to adjust CPU

operating voltage and frequency, typically controlled by operating system software to reduce
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frequency and voltage under low CPU load conditions. This differs from near-threshold in

a number of different ways. First, the lowest voltage in most DVFS implementations is still

much above the threshold voltage. Second, DVFS designs are traditionally still targeted for

nominal voltage operation and voltage is lowered only when CPU load is minimal. Finally,

DVFS is generally very slow to change, on the order of 10,000s of CPU cycles to make

voltage and frequency adjustments [9]. Near-threshold, on the other hand, is meant to be

the primary operating condition and any nominal voltage operation is used as needed. Fast

boosting techniques, discussed below, are proposed to quickly adjust the voltage of a core in

10s to 100s of cycles, much faster than traditional DVFS implementations.

Existing power savings techniques that are heavily used, even in commercial products, are

power gating and clock gating. However, these techniques are not mutually exclusive with

near-threshold and could be used within a near-threshold implementation. Power gating

uses PMOS headers or NMOS footers to turn off cores or other large circuit block when they

are not in use. Typically all state data is lost when a block is powered down, thus there are

overheads to reinitialize the block when it is powered on. Thus, power gating is not ideal for

continuous operation but can be used intermittently.

Clock gating disables clock signals to unused blocks to save energy that would have been

used to switch capacitance internal to that block, including gate and parasitic capacitance

on both clock signals as well as any associated data or control signals. Unlike power gating,

clock gating can respond very fast (single cycle) to the needs of a block since it is uses

logic gates to impede the propagation of a clock signal, as oppose to waiting for the intrinsic

capacitance of a block to be charged. Additionally, clock gating loses no state as all sequential

elements remained powered. As mentioned above, clock gating is an orthogonal technique

to near-threshold that could be used to save additional power.

Ultra-low voltage (ULV) or subthreshold designs are related prior work, but often target

minimizing power rather than energy, especially for specific applications that do not have

demanding performance requirements, such as some sensor nodes [30]. Certain algorithms

parallelize very well and lost performance from slow clock frequency can be regained through

parallelism. An early example is a 180 mV, 164 Hz, 1024-point Fast Fourier Transform pro-

cessor (FFT) fabricated in 0.18µm [31]. While the processor was targeted and designed

5



for 180 mV operation, the authors found energy was minimized near threshold consuming

155 nJ/transform at 350 mV . A more recent 65nm ULV, 1024-point FFT design operated

at 0.27V and achieved 17.7 nJ/transform [32] through aggressive pipelining of the design.

Another example of a low-voltage hardware accelerator is a computer vision feature extrac-

tion engine implemented in 28nm CMOS and operating at a very slow 27Mhz, but providing

3.5× energy efficiency than previous designs [33]. Within this work near-threshold is viewed

as a flexible approach to general purpose computing, and not limited to highly parallelizable

hardware accelerators.

This dissertation advances near-threshold computing by providing a methodical definition

of “near threshold” and an in-depth examination of NTC across past and future CMOS

process technologies. By systematically defining near-threshold, trends and tradeoffs between

different technologies are closely analyzed, lending insight in how best to design and optimize

near-threshold systems. Also proposed in this dissertation are techniques for fast voltage

boosting, in which a core’s operating voltage is dynamically adjusted depending on workload,

further improving energy efficiency.

In Chapter 2, we start by investigating the limit of voltage scaling together with task

parallelization to maintain task completion latency. When accounting for Amdahl and ar-

chitectural parallelization overheads, minimum task energy is obtained at “near threshold”

supply voltages across six commercial technology nodes from 180nm to 32nm. Operating

in near-threshold improves overall energy efficiency for a power-constrained CMP by 4×

for a representative set of scientific benchmarks tested. A study of technology trends show

near-threshold becoming less effective with newer technologies as transistor dynamic voltage

range decreases and leakage worsens. Additionally, an initial study of differences between

near-threshold high activity circuits, such as core logic, and low activity, such as SRAM, is

given.

A drawback of near-threshold is task parallelizsation, as some tasks parallelize better

than others, and the energy efficient operating voltage changes with ease of parallelism.

Thus, changing workloads makes a design targeted to operate at a fixed voltage during

design time impractical for most applications. Additionally, within a task it is beneficial to

be able to “boost” the voltage of a core quickly to meet latency or performance constraints
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of an application. As an example, consider a MapReduce [34] style task running which

operates in two parts. First, the map phase splits the task in parallel across eight cores,

each processing their own section of data. Second, the reduce phase coalesces data from

the map phase using a single core. As this single-core map phase becomes a processing

bottleneck, it is useful to rapidly raise the voltage of this core near-threshold, optimized for

parallel processing during the map phase, to nominal Vdd. At nominal Vdd the single-task

performance rapidly increases to help overcome serial bottlenecks.

The NTC analysis in Chapter 2 is extended in Chapter 3 by including voltage boosting

into the energy optimizations. Therefore, we examine improvements in energy efficiency

and parallelism when serial portions of code can be overcome through quickly boosting the

operating voltage of a core. When accounting for parallelization overheads, minimum task

energy is obtained at “near threshold” supply-voltages across six commercial technology

nodes and provides 4× improvement in overall CMP performance. We find boosting is most

effective when the task is modestly parallelizable, but not highly parallel or serial.

Even for single threaded applications fast voltage boosting techniques may be useful

for fine-grained periods of low core activity. In Chapter 4 we characterize four SPEC2000

benchmarks and find, on average, a 30% improvement in energy-efficiency on an out-of-

order core. The extracted idleness occurs at a finer granularity than traditional DVFS and

heterogeneous architectural techniques can provide.

A novel core supply boosting technique, called Shortstop, is proposed in Chapter 5 and

boosts a 3nF core in 26ns while maintaining acceptable supply voltage droop. The technique

is proposed as an alternative to on-chip regulators which require expensive inductors. Instead

Shortstop leverages the innate parasitic inductance of a dedicated dirty supply rail is used as

a boost-converter and combined with an on-chip boost capacitor. Shortstop is demonstrated

in a wirebond implementation and is able to boost a core up to 1.8× faster than a header-

based approach, while reducing supply droop by 2− 7×, and can be used in near-threshold

computing to overcome serial code bottlenecks.

The initial prototype of Shortstop in Chapter 5 is demonstrated in a wirebonded pack-

age. However, modern day processors use flip-chip packages via a bumping technology, such

as controlled collapse chip connect (C4) [35], which meets growing I/O demands, delivers
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more reliable power, and consumes a smaller area footprint. Because Shortstop depends on

parasitic inductance of a package, which are much lower for flip-chip compared to wirebond,

Chapter 6 introduces a second-generation Shortstop FC design aimed at flip-chip implemen-

tations. Shortstop FC is a much more modular test platform including sixteen emulated cores

(composed of current sources and capacitors) that can be configured into usage scenarios.

The physical implementation of Shortstop FC is improved, with more robust power delivery

and distributed power switch headers and footers. Lastly, an automatic tuning algorithm is

proposed to quickly tune a Shortstop system to raise the voltage of a core in the quickest

time possible.

Foundries have embarked on a fundamental switch from planar transistors to FinFET

at the 22 − 16 nm node and below, opening a new chapter in Moore’s law. With the

introduction of FinFET devices, the semiconductor industry is making a dramatic shift to

devices that exploit the third dimension (3D), and the full impact of this change is still being

assessed by the design community. FinFET differs significantly from planar technology, with

much improved channel characteristics, which have the potential to dramatically improve

near-threshold performance. The impact of FinFET on voltage scaling and, in particular,

near-threshold operation has not been studied and is of great interest as device engineers

work to optimize the next generation FinFETs, circuit designs develop clever techniques

to improve energy efficiency while mitigating variation, and architects develop increasingly

efficient arrangements of cores and peripherals to be placed on a chip.

In Chapter 7, FinFET’s impact on near-threshold is explored. Using six technology

models, three planar and three FinFET, from 40nm to 7nm, we examine the impact of device

characteristics on near-threshold efficiency and performance. We start by presenting an

analytical model of performance-sensitive, near-threshold energy gain. Next, we analyze how

individual device characteristics, such as transistor threshold voltage, subthreshold slope,

DIBL, and back-end-of-line parasitics, impact near-threshold. With this knowledge the six

technology nodes are targeted for near-threshold, and we show how FinFET differs from

planar technologies and what the trends are for the most recent and future technology nodes.

Finally, we delve into more detail on how to include variation and area in near-threshold, and

we explore additional observations of FinFET’s advantages over planar. Our main finding
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is that FinFET’s improved channel characteristics more than double energy efficiency gains

compared to recent planar nodes, while area density improvements allow near-threshold

operation to be realized. Thus, the switch to FinFET CMOS technology allows for a return

to strong voltage scalability, reversing trends seen in planar technologies, while dark silicon

has created an opportunity to add cores for parallelization.

Chapter 8 expands the scope of Chapter 7 by studying how three different processing

elements— general-purpose cores, throughput-oriented cores, and accelerators— are best

designed in 7nm FinFET compared to planar, including key voltage scaling techniques to

improve energy efficiency. Using circuit simulations we examine efficiency gains from three

voltage scalability scenarios, maximizing aggregate task throughput, single task throughput,

or a mix of the two, and use these results to guide architectural design. Unlike prior studies,

we also consider overall system area constraints in our methodology.

While the techniques in Chapter 8 generalize for many applications, we illustrate how

they could be used to design a system for wide-angle motion imagery. The proposed sys-

tem uses a heterogeneous mix of the three processing elements and operating voltages to

achieve high energy efficiency for data parallel imaging tasks, yet leverages less-aggressive

voltage scaling to improve performance of serialized event recognition tasks. FinFET CMOS

technologies offer high area density relative to practical power constraints, and very good

voltage scalability, making them ideal to realize high-performance near-threshold embedded

systems. Our final results show an improvement of 2.6− 8.9× in energy efficiency for fixed

and unconstrained latency tasks, while latency reductions of up to 20% are possible for tasks

in which latency is minimized for a 5% serial coefficient. For single tasks with less serial

code, up to a 65% latency reduction is possible.

Concluding this dissertation is Chapter 9, which enumerates remaining work to be done,

including testing of Shortstop V2 and completion of the FinFET NTC study. A list of related

publications, that were that were generated as a product of this dissertation, is shown at the

end of Chapter 9.

Key observations of this thesis include:

• In order to maximize energy efficiency, near-threshold computing requires supply volt-

ages lower than in conventional dynamic voltage scaling.
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• For performance sensitive applications, near-threshold is able to improve energy effi-

ciency as long as the technology scales reasonably well with voltage (good circuit delay

scaling) and excess area is available to add cores for parallelization.

• Short-channel effects, such as those seen in recent planar technologies, adversely impact

circuit delay scaling. Thus, recent planar technologies are not ideal for near-threshold

even if area is available for additional cores.

• FinFETs feature good circuit delay scaling and high area density. Thus, FinFETs are

ideal for near-threshold performance-sensitive applications.

• Latency of a single task is improved by up to 65% in FinFET, even when imposing

area constraints, if at least 90% of the task is parallelizable. This was not possible

in planar technologies, either because of poor circuit delay scaling (in recent planar

technologies) or poor area density (in older planar technology).
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CHAPTER 2

Defining Near-Threshold

2.1 Motivation

The first consequence of this supply voltage stagnation has been the inability to increase

processor frequency while still meeting power density constraints. Instead, processor designs

have added more cores without significant increase in their frequency, leading to a prevalence

of chip multiprocessor (CMP) [4] in contemporary commercial architectures. However, since

the die area of a server class chip has remained approximately constant at ∼ 300−600 mm2,

and since the number of cores has been increasing geometrically with each process step, the

total chip power has again started to increase, despite relatively flat core frequencies. In

practice the maximum allowable power dissipation of a single die is constrained by thermal

cooling limits and is roughly 150W without advanced cooling technologies [1]. Hence, the

second consequence of supply voltage stagnation is a limit on the number of cores that can be

active simultaneously on a die and thus the maximum attainable performance of a modern

CMP.

For instance, a 600 mm2 CMP could accommodate 23 Intel Westmere cores [1] in 22nm

CMOS, which would dissipate 211W when all simultaneously executing, far exceeding the

practical thermal dissipation limit. This would result in 40% of the cores (9 of 23) being idle.

The problem of power-constrained core under-utilization has been recently observed in the

literature and is sometimes referred to as dark silicon [5]. If scaling trends continue to 16nm,

a similar CMP would consist of 46 cores, consume a max of 300W, and 50% of the cores
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(23 of 46) would be idle. As a result the most recent server-class CMPs have incorporated

extensive power gating methods to turn off idle cores to free thermal budget for active cores

[1].

Because modern CMP performance is now limited by power and not die-area, it is nec-

essary for a paradigm shift in CMP design: cores are plentiful but powering them is not.

The overall CMP performance can be best measured as task throughput: the number of

completed tasks per second. In a power-constrained CMP, the task throughput is limited

by the number of tasks that can be simultaneously active on the CMP within the thermal

constraint. Thus, if we are able to lower task energy, the number of simultaneous tasks on

the CMP (and hence activated cores) can be increased, improving task throughput.

The most effective knob for reducing energy consumption of a task running on a micro-

processor is lowering the operating voltage. In tandem, processor frequency is reduced and

task completion latency is increased. This type of voltage reduction has been widely used

in DVFS, but since it impedes task completion latency, it is not generally applicable for

high-performance applications. To address this, parallelization can be used to counteract

lower clock frequencies and maintain latency. In this approach, the execution code of the

task is parallelized so that the task executes on multiple cores in the CMPs, each operating

at a lower frequency and voltage. In this way, the completion time remains the same as

when the same task was executed serially on a single core at full voltage, while significant

savings in total energy expended for completing the task is obtained. This reduction in en-

ergy consumption in turn allows more tasks to be executed on the CMP, thereby increasing

overall CMP task throughput.

This combined voltage / parallelization approach is similar to the simpler circuit based

parallelization approach proposed earlier in [36] which trades-off energy for latency. The

method envisioned here instead parallelized the algorithm and thereby maintains task la-

tency while still obtaining energy improvement. In fact, with the emergence of CMPs, many

key applications are currently being parallelized by software developers. However, paral-

lelization entails a number of overheads, which tend to increase as the task is parallelized

into smaller subtasks. These overheads limit the obtainable energy improvement from the

proposed approach, as the overhead eventually dominates over the quadratic energy gains
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from voltage reduction. Hence, there exists a minimum energy point, at which a task is

optimally parallelized and voltage scaling reaches its efficiency limit.

To our knowledge, no systematic analysis has been performed to determine where this

energy minimum lies. Hence, in this chapter, we study this energy minimum, its associ-

ated energy gains, core operating voltage and task parallelization. We model three key

factors limit energy-efficient parallelization in modern CMOS technologies: The leakage of

a transistor, Leakage Overheads; the inability to achieve ideal code parallelization, Amdahl

Overheads; the impact of coherence, interconnect, and memory system design, Architectural

Overheads. All these overheads are interrelated and limit the obtainable energy efficiency

gains from voltage scaling, the optimal energy voltage (Vopt) and the number of parallel sub-

tasks required for frequency drop compensation (Nopt). In addition, we study the behavior

of Vopt and Nopt across process nodes from 180nm to 32nm technology, using commercial

process models.

Our key finding is that when realistic application-dependent overhead is included the op-

timal operating voltage is near threshold, roughly 200−400mV above the threshold voltage,

and that this voltage range is valid across the six generations of industrial technologies as

well as across transistor Vt selection. When accounting for all three overheads, operation

at Vopt yields an energy efficiency gain of 4× compared to operation at nominal voltage

in 32nm and therefore allows a 4× increase in CMP task throughput under thermal con-

straints. Additionally, we find the maximum amount of energy-efficient parallelism, Nopt,

across SPLASH2 benchmarks has a median value of approximately 12. Because running at

lower supply voltage increases sensitivity to variation, we also explore the impact of variation

on Vopt and include this in our analysis.

2.2 Scaling Limiters

There are three key limiters to energy-efficient scaling when a task is parallelized to

maintain constant latency: leakage, Amdahl, and architectural. Each of these contributes to

increased minimum energy and raises the energy-efficient operating point Vopt. The three

key limiters are analyzed in the following subsections.
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2.2.1 Leakage

First, we will assume a task can be perfectly parallelized across cores to compensate

for frequency loss at a lower voltage, and the only non-ideality from running at a slower

clock frequency is transistor leakage. It is well known that reducing the supply voltage

initially increases energy efficiency of a computation quadratically, yielding dramatic energy

efficiency gains [31]. In the last 7 years, it has also been shown that leakage energy poses

a fundamental limiting factor to energy efficiency gains through voltage reduction [37, 38].

The required energy to complete a task can be divided into two categories, dynamic and

static, and the classic relationship between energy and operating voltage is:

Etotal = Edynamic + Estatic = CV 2
dd + IleakVddTtask

Dynamic or active energy is the energy consumed in charging and discharging the transis-

tor and interconnect capacitances associated with the task being executed. Static or leakage

energy is due to the always present subthreshold and gate oxide currents integrated over

the time Ttask to complete a task. While dynamic energy represents the energy needed to

complete a task, static energy is parasitic and only poses an overhead on the computation.

Although leakage can be mitigated in standby mode using techniques such as power gating

and body biasing, it is more difficult to do so in active mode. Hence, leakage forms an

unavoidable and fundamental limit on energy-efficiency.

To understand how leakage energy scales with Vdd, clock frequency scaling must be

considered since as clock frequency is reduced the time to complete a task increases. For

illustration purposes, the relationship between operating voltage and clock frequency is ap-

proximately:

1

Ttask
∝ f ∝ (Vdd − Vt)α

Vdd

where Vt is the threshold voltage and α is process dependent but close to 2. For our

results we simulated industrial transistor models in Cadence Spectre to obtain energy and

performance. The canonical circuit topology was a chain of 31 fanout-of-4 inverters along

with dummy devices for realistic input and output slew rates. The logic activity factor was
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chosen as 15% to emulate a core where 15% of the logic gates switch on average per clock

cycle [39]. In addition chains of other types of logic gates were simulated to confirm that the

result obtained for an inverter chain were representative of other logic structures as well.

Initially, when Vdd is large relative to Vt, frequency scales proportionately to Vdd as

shown in Figure 2.1. As Vdd is further reduced and nears Vt, frequency scales exponentially

with Vdd because the transistor is no longer fully activated. Instead the transistor drive

current comes from subthreshold leakage current which scales exponentially with the gate-

to-source voltage, and thus exponentially with Vdd.

Figure 2.1: Clock frequency of a logic chain versus operating voltage. Data is from a
simulation of a chain of inverters in 32nm. As Vdd is further reduced and nears Vt, frequency
scales exponentially with Vdd and performance degrades significantly.

As operating voltage is lowered, the static energy increases since the time to complete

a task scales inversely with clock frequency. Eventually, at very low voltages, static energy

dominates over dynamic energy, Figure 2.2. The operating voltage where total energy is

minimized is called Vopt and occurs when the derivatives with respect to Vdd of the two

energies are equal, (dEstatic)/dV dd = (dEdynamic)/dV dd [38]. Beyond this point static energy

increases more rapidly than dynamic energy decreases, and the total energy increases away
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from the energy minimum. For a 32nm node, Vopt when considering leakage overheads is

300 mV.

Figure 2.2: Total, static, and dynamic energy across Vdd for a 32nm process.
Energy is minimized when the slope of static and dynamic energy is equal. Below the
minimum energy point, energy efficiency is not improved through power consumption may
decrease.

In recent years, several sensor processors that operate at this Vopt, which typically lies

below the device threshold voltage, have been designed and demonstrated as much as 10×

energy efficiency gains over operation at nominal supply voltage [30, 40]. However, these

sensor processors also incur phenomenal frequency loss, often operating at clock frequencies

of 100s of kHz.

To fully compensate for a frequency loss of X because reduced voltage operation, a task

with k instructions must be parallelized across X cores. If frequency is not compensated the

total execution time would increase proportionally to X∗k. But, since the task is parallelized,

each of the X cores runs k/X instructions so the total execution time is X ∗ (k/X) = k.

Thus, no performance is lost from parallelizing. While most scientific and high-performance

applications have been parallelized to operate on CMPs, it is not practical to recover a factor

of 100’s or 1000’s in frequency loss without enormous parallelization overheads. Therefore,
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Vopt, considering optimization overheads will be at a higher voltage level, which will be

discussed in the next subsection.

2.2.2 Amdahl

As discussed earlier, scaling voltage is essential in the CMPs to achieve maximum com-

putational performance for a fixed thermal budget, since the number of simultaneous tasks

that can fit in a TDP is directly proportionate to the energy efficiency of the task. When

scaling supply voltage for a latency-sensitive task, slower clock frequency can be compen-

sated by executing the task in parallel across more cores. For real applications the process

of subdividing a task includes non-idealities, such as serial portions of code, and thus incurs

parallelization overhead. To compensate a task of k instructions for a frequency loss of X

requires X cores (each running k/X instructions) plus m additional instructions of paral-

lelization overhead. These extra m instructions consume additional energy, penalizing lower

voltage operation, and therefore increase Vopt. Hence, parallelization overheads compound

the impact of leakage overheads which limits the voltage scalability of a latency-sensitive

task. Compensating below Vopt by further subdividing the task results in a net energy

increase due to leakage and parallelization overheads.

The well-known Amdahl’s law [41] shows that speedup of algorithms as they are paral-

lelized over an increasing number of cores is limited by the parallelizable portion of the code

and by new code introduced to initialize and decompose the program. Speedups are there-

fore bounded asymptotically as parallelization increases because the serial portion eventually

dominates. These overheads will be referred to as Amdahl overheads and include only the

impacts of algorithmic parallelization.

The gem5 [42] system simulator is used to evaluate the impact of Amdahl overheads on

a Network-on-Chip (NoC) system. We evaluated the SPLASH-2 benchmark suite which is

a set of highly parallelized scientific algorithms applicable to CMPs. Each core is an Alpha

architecture with one instruction-per-cycle running at 1GHz. To separate Amdahl overheads

from additional architectural non-idealities, we simulated the system with infinite intercon-

17



nect bandwidth and an ideal memory with 1 cycle latency. Architectural non-idealities are

addressed in the next subsection.

The effective speedup of parallelizing by running on 1 to 64 cores is shown in Figure 2.3.

For illustration only three representative benchmarks are labeled, but the entire suite is

plotted in the figure. Some benchmarks, such as Barnes, have nearly ideal speedup indicating

very little Amdahl overheads and perfect parallelization. Other benchmarks, such as LUNC,

reach a speedup of only 10 with 64 cores indicating a high percentage of serial code. These

benchmarks represent a range of parallelized scientific applicable to CMPs and, as the number

of CMP cores continues to increase, more high-performance applications will be similarly

parallelized.

Figure 2.3: Speedup versus amount of parallelism demonstrating application-
dependent Amdahl Overheads. An ideal speedup corresponds to the black diagonal
line, where the number of cores is exactly equal to the speedup. Increased paralleliza-
tion overheads degenerate the line, so that most cores are needed to achievable comparable
speedup. Three of the SPLASH-2 benchmarks are labeled for demonstration, with Barnes

being close to ideal and LUNC very non-ideal.

Amdahl’s Law [41] gives Speedup = n/(1 − Ps + Psn), where n is the number of cores

parallelized over and Ps is the Amdahl serial coefficient. We fitted the SPLASH-2 benchmark

speedups to Amdahl’s law and applied it to the voltage scaling calculations to obtain Vopt
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when considering non-ideal parallelization. The benchmarks were parallelized to fully com-

pensate for frequency loss from lower voltage operation. Figure 2.4 shows Vopt increasing

in 32nm due to Amdahl overheads. When Amdahl overheads are added, the Vopt operating

range for most overheads is 25-150 mV above the leakage overheads only case. Although

the serial coefficient is highly application-dependent, the range of Vopt for the benchmarks

is small, varying by only 150mV. If the serial coefficient is 100% (e.g., none of the code is

parallelizable) then nominal voltage would be optimal.

Figure 2.4: Vopt vs. Amdahl coefficient for all SPLASH-2 benchmarks (three
labeled) in 32nm. Higher Amdahl coefficient, e.g.less parallelizable workload, increases
Vopt. A coefficient of 100% corresponds to a Vopt of max Vdd.

2.2.3 Architectural

Architectural features, such as coherency, inter-core communications, and cache pollu-

tion, further add overhead to a CMP system as voltage is reduced and a task is parallelized.

Furthermore, application memory access patterns can affect overhead. For example, a sub-

task competes for L2 cache resources and may evict another subtask’s data. Coherence

overhead is added when a multiple subtasks share a single block of data. Communication
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overhead is increased when there is heavy communication between distant cores on an NoC

because data must transverse multiple hops.

To quantify architectural overheads, the SPLASH-2 benchmarks were simulated with

gem5 as in Section 2.2 but the configuration was changed to add non-ideal memories, caches,

and interconnect. The NoC simulations were run using a tiled Mesh topology where each

tile contains a core, private L1 caches, and a slice of a shared L2 cache. A MOESI directory

protocol is used to maintain coherence. Table 2.1 lists the detailed simulation parameters.

Table 2.1: Gem5 simulation parameters used to measure architectural overheads.

Feature Description
Cores 1 to 64 one-IPC Alpha cores @ 1GHz

L1 Caches
32 kB, 1 cycle latency, 4-way associative,
64-byte line size

L2 Caches
Shared 1MB divided evenly between cores,
10 cycle latency, 8-way associative,
64-byte line size

Interconnect
2-GHz Routers, 128-bit, 2-stage routers,
50 cycle-access to main memory

Architectural overheads from memory and interconnect non-idealities reduce the obtain-

able speedup when parallelizing. These non-idealities were added in the Vopt calculation

when parallelizing and the benchmarks were again parallelized to fully compensate for fre-

quency loss. Like leakage and Amdahl overheads, architectural overheads further increase

the minimum energy consumption and Vopt as shown in Figure 2.5. Certain benchmarks

are highly parallelizable before caches and coherency is introduced, while others have neg-

ligible architectural overheads. For example, ocn has almost no Amdahl overheads but

significant architectural overheads. To contrast, lun has little architectural but significant

Amdahl overheads. Across the benchmarks shown Vopt increases by no more than 200mV.

Thus, architectural overheads are another key limiter to voltage scaling, increasing Vopt and

the minimum obtainable energy consumption when a task is parallelized to compensate for

frequency loss.
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Figure 2.5: Vopt in 32nm with leakage, Amdahl, and Architectural overheads.
Architectural and Amdahl overheads increase Vopt by no more than 200 mV.

2.3 Impact of Technology and Circuit Features on NTC

The previous section discussed the three key limiters of energy-efficient scaling. However,

Vopt is also impacted by additional technology and circuit factors, including technology node,

transistor Vt, and process variation, which are discussed below.

2.3.1 Technology

In the previous section Vopt was analyzed at single 32nm technology node. To identify if

there is a voltage scaling and parallelization guideline consistent across many technologies,

we calculated Vopt for SPLASH-2 across 6 industrial technologies when accounting for all

three voltage scaling overheads, as shown in Figure 2.6. Circuit simulations of energy and

performance were done in Cadence Spectre using industrial foundry technology kits from

32nm to 180nm.

The process node affects Vopt primarily because technologies have become more leaky

generation-to-generation due to reduced threshold voltage. Higher leakage increases Vopt,

however, the lower threshold voltage will also improve the frequency degradation with voltage
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Figure 2.6: Vopt across technologies when including all three overheads. Vopt
has been trending downward with each generation and is 200-400mV above Vt for most
benchmarks.

scaling which will reduce Vopt. A key finding of this work is that Vopt consistently tracks

200-400mV above the threshold voltage for most benchmarks across the six technology nodes.

We define this region above the threshold voltage as the near-threshold (NTC) region. Three

benchmarks, Barnes, FFT, and Water Spatial, were close to ideally parallelizable and are

not contained in the NTC region. However, most general-purpose, high-performance CMP

applications will have some degree of parallelization overhead and thus lie in the NTC region.

The median energy gains at Vopt operation and optimal number of cores to parallelize

across to compensate for clock frequency loss, Nopt, for SPLASH-2 across technology nodes

is shown in Figure 2.7. Table 2.2 includes a breakdown of energy gains and optimal number

of cores for each benchmark in the SPLASH-2 suite. Energy gains have diminished by

1.8× from 180nm to 32nm as leakage has increased and the dynamic range available for

voltage scaling has narrowed from 180nm to 32nm. This difference is less dramatic with

less scalable benchmarks, since the parallelism overheads are higher and thus the amount

of voltage scaling in older technologies is limited. The energy gains in newer technology

from operating at Vopt instead of at nominal voltage are 4× and Nopt has a median of
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12, and no more than 25, cores for SPLASH-2 in 32nm. This increased energy efficiency

directly increases CMP performance when limited by a thermal budget. Thus, to maximize

thermally-limited CMP performance, tasks should operate in the near-threshold region and

parallelize on no more than 25 cores in 32nm. The energy gains and optimal amount of

parallelism has decreased with each generation.

Figure 2.7: Median energy gains and optimal number of cores, Nopt, when operat-
ing at Vopt as compared to nominal voltage for SPLASH-2 benchmarks. Energy
gains and optimal number of cores has trended downward from 180nm to 32nm as leakage
has increased and the dynamic range available for voltage scaling has narrowed.

If Amdahl and architectural overheads can be neglected because an application is latency

insensitive (for instance, sensor applications) then only the fundamental leakage overhead

needs to be considered. To provide a comparison with the trend of Vopt for latency-sensitive

applications, we show in Figure 2.8 the fundamental lower bound on Vopt across technologies,

where leakage is the only voltage scaling overhead. In 180nm and 130nm Vopt for a perfectly

parallelizable task is below threshold. Because technologies are becoming leakier with process

scaling, Vopt has been trending upward with each generation and becomes super-threshold

in 90nm. For a perfectly parallelizable task the energy gain has decreased from 52× in 180nm

to 6× in 32nm, Figure 2.9. Likewise, the optimal number of cores Nopt has decreased from
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Table 2.2: Energy gain and optimal number of cores Nopt (in parenthesis) across SPLASH-2
benchmarks and technologies when including the three voltage scaling overheads.

Benchmark 180nm 130nm 90nm 65nm 40nm 32nm
bar 12.7× (71) 7.9× (55) 10.0× (69) 7.8× (43) 5.7× (44) 5.2× (19)
cho 6.1× (13) 3.9× (10) 4.6× (14) 4.3× (12) 3.2× (11) 3.5× (9)
fft 13.2× (68) 8.3× (82) 10.4× (67) 8.0× (42) 5.8× (43) 5.2× (23)

fmm 7.7× (21) 4.8× (20) 6.0× (19) 5.3× (16) 3.9× (16) 4.1× (12)
luc 8.6× (26) 5.3× (25) 6.7× (24) 5.9× (18) 4.2× (21) 4.4× (13)
lun 4.1× (8) 2.7× (6) 3.1× (7) 3.0× (6) 2.3× (6) 2.6× (6)
occ 6.9× (14) 4.3× (16) 5.3× (17) 4.8× (14) 3.5× (13) 3.8× (9)
ocn 6.8× (15) 4.2× (12) 5.2× (17) 4.7× (14) 3.5× (14) 3.8× (9)
rad 5.7× (11) 3.6× (12) 4.3× (12) 4.0× (10) 3.0× (9) 3.4× (8)
ray 7.3× (17) 4.6× (15) 5.6× (16) 5.0× (17) 3.7× (13) 4.0× (11)

wan 12.6× (71) 7.8× (56) 9.9× (70) 7.8× (32) 5.7× (45) 5.2× (19)
was 18× (186) 11.3× (250) 13.0× (121) 9.0× (51) 6.8× (79) 5.5× (25)

21,000 (clearly unachievable) in 180nm to 29 in 32nm. Though parallelizing across thousands

of cores in older technologies is not achievable, the gains and Nopt in recent technology nodes

have dramatically decreased even when neglecting Amdahl and architectural overheads.

2.3.2 Process Variation

A challenge of operating at a reduced voltage is increased sensitivity to process, tem-

perature, and supply voltage variations that causes variability in circuit delay and energy

consumption. A slower critical path and leakier devices decrease energy-efficiency thus in-

creasing Vopt. Figure 2.10 shows the 3-sigma delay variation relative to mean for a single

gate and a chain of logic in 40nm technology using industrial variation models. Process

variation can be global, affecting all transistors uniformly across a die, or local which causes

delay mismatch between different devices and paths on a chip.

In the NTC region, local variation accounts for 30% of 3-sigma delay of a single gate.

Since a CMP’s maximum clock frequency is limited by the worst-case critical path, mismatch

between different critical paths raises Vopt as the leakiest path runs at clock frequency set

by the slowest path. However, local variation is reduced for deeper logic depths since local

variation is usually uncorrelated and hence averages out along a path. Thus, for a chain 31

gates, local variation is only 10% of total variation, so its impact is minor.

Global variation raises Vopt, Figure 2.11 for three technology nodes, but all paths will

either: (1) slow and have less leakage or (2) have more leakage but run fast, so the total
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Figure 2.8: Theoretical lowest Vopt across six technology nodes with leakage over-
heads only. Vopt has been trending upward with each generation and becomes super-
threshold in 90nm.

Figure 2.9: Theoretical maximum energy-efficient parallelism Nopt and energy
gains across six technology nodes with leakage overheads only. Energy gain has
reduced from 52× in 180nm to 6× in 32nm.
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Figure 2.10: Change of delay for total and local process variation of a single gate
and a logic chain of 31 gates. Longer gate chains average out mismatch.

leakage overhead is relatively constant. This is unlike local variation where the leakiest path

is run at the slowest clock frequency, thus global variation’s contribution to increasing Vopt

is less than local variation. Total delay variation at Vopt is significant, but high-performance

CMPs are usually binned for speed so that each die can run at its optimal frequency. Thus,

the range of bins will increase but, since each die is tuned to its optimum speed, global

variation does not significantly increase Vopt.

The increase in Vopt when considering 3-sigma delay variation and the parallelization

overheads described above is 30mV-60mV for an average SPLASH-2 benchmark. The delay

variation also depends on the number of critical paths in a design, since local variation

reduces by taking a maximum across multiple paths. As the number of paths increases the

mean shifts up, but the variation is reduced, shown in Figure 2.11. Thus, variation does

impact delay but its impact on Vopt and minimum energy are small.
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Figure 2.11: Increase in Vopt because of 3-sigma variation across generations.
Variation increases Vopt by 30mV-60mV on average for SPLASH-2 benchmarks.

2.3.3 Transistor Threshold Voltage

The energy-efficient operating voltage Vopt also depends on transistor threshold voltage

selection. Conventionally regular threshold voltage transistors are used for high-performance

applications, since they have the best drive strength, whereas the higher threshold voltage

transistors are used where low static-power is a concern, such as in mobile applications.

When considering a parallelized task, Amdahl and architectural overheads limit the

energy-efficiency and voltage scalability, thus setting Vopt, Figure 2.12 (top). As thresh-

old voltage is reduced, leakage begins to dominate until the voltage scalability is limited by

leakage overheads and not Amdahl or architectural overheads. The energy drops initially as

threshold is reduced, since the task can run faster, and Vopt correspondingly tracks. Once

leakage dominates the energy stays relatively constant. As a rule-of-thumb, the optimal

threshold voltage is at the inflection point (approximately 250mV in figure) between the

parallelism-dominant and leakage-dominant region, since above this point energy increases

and below this point the process becomes unnecessarily leaky.
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For comparison, Figure 2.12 (bottom) shows Vopt when a task only includes leakage

overheads. Since there is no Amdahl or architecture overheads, Vopt lowers as threshold

voltage increases, since the integrated leakage current is reduced, until Vopt enters the sub-

threshold regime. Once Vopt is subthreshold, raising the threshold voltage does not change

the energy-efficient operating voltage or energy consumption to first-order [37].

Tasks that are not latency sensitive can operate in subthreshold with high Vt transistors,

but this is not optimal for latency-sensitive applications. To achieve maximum performance

in latency sensitive applications, even when limited by a thermal budget, the threshold

voltage should be reduced until leakage starts to dominate voltage scalability.

2.4 Related Work: Energy-Delay Product

The energy gains by running at a lower voltage come at the cost of decreased clock

frequency. A common optimization goal in this trade-off has been minimizing the energy-

delay-product (EDP) [43]. Figure 2.13 shows the marginal percentage gain in energy by

running slightly slower as voltage is scaled. Since clock frequency initially increases linearly

as the voltage is scaled, while dynamic energy decreases quadratically, the marginal tradeoff

between is energy and delay is above unity, e.g., a 5% decrease in frequency results in more

than 5% energy improvement.

When marginal decrease in frequency is equal to the increase in energy, the energy-delay

product (EDP) is minimized, labeled as Vedp in Figure 2.13. Many designs are targeted

to minimize EDP since it provides a reasonable tradeoff between energy and delay of a

circuit. Alternatively, metrics that weigh delay more heavily have been proposed, such as

ED2P [44]. However, all of these metrics, including EDP, tradeoff energy for delay. In a

thermally-constrained system, maximizing energy-efficiency is essential to maximize perfor-

mance. Thus, instead of trading off energy and delay or minimizing EDP when targeting a

design, energy itself should be minimized in these systems which occurs at Vopt.
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Figure 2.12: Vopt vs. Vt in 32nm with Amdahl and architecture overheads (top)
and leakage only (bottom). With ideal workloads, higher threshold voltage increases
energy efficiency until Vopt is below Vt. With non-ideal workloads, a lower Vt improves
energy efficiency.
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Figure 2.13: Energy and performance tradeoff in 32nm and marginal cost. Tradeoff
between performance and energy (top) in 32nm as Vdd is swept showing the energy mini-
mum. Energy decreases towards Vopt / Eopt before static energy dominates. Marginal gains
in energy for marginal decreases in frequency (bottom) show that energy gains diminish as
voltage is scaled. The energy-delay optimal point is when the marginal gain is 1 while the
energy-minimal Vopt is at 0.
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2.5 Conclusions

We have detailed the limits of voltage scaling for latency-sensitive applications, when

slower clock frequency is compensated by parallelization across multiple cores. As CMPs be-

come limited by thermal cooling constraints, near-threshold operation is needed to maximize

computations for a fixed thermal design power. The three voltage scaling limiters, leakage,

Amdahl, and architectural, contribute to increasing the minimum energy and optimal supply

voltage Vopt to maximize total CMP performance. As a guideline, the near-threshold region

for maximum energy-efficiency is roughly 200mV-400mV above threshold voltage for most

applications and this trend held for the six technology nodes we examined.

NTC operation increases energy-efficiency of a core by approximately 4× in 32nm for

the SPLASH-2 benchmarks we investigated, roughly translating to a 4× improvement in

performance for a thermally-limited CMP. Additionally, the maximum amount of energy-

efficient parallelism is no more than 25 cores in 32nm. Delay variation increases in the NTC

region, but has little impact on Vopt. For latency sensitive applications threshold voltage

should be minimized until leakage dominates voltage scalability, whereas latency insensitive

applications benefit from subthreshold operation.
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CHAPTER 3

NTC with Voltage Boosting

3.1 Motivation

The previous chapter defined near-threshold and the three key overheads that limit volt-

age scaling. However, we showed that parallelism overheads such as Amdahl and architec-

tural, can severely limit energy efficiency because serial portions of code cannot be split

among cores and eventually bottleneck performance. Assuming that a workload can be split

into parallelizable and serial components, energy efficiency could be improved by dynamically

adjusting a core’s voltage between near-threshold and nominal for parallelizable and serial

components, respectively. Serial components benefit the most from as much single-threaded

performance as possible, as there is no way to decrease their latency besides raw processor

performance. Thus, the optimal operating voltage for serial code, assuming latency cannot

degrade, is at nominal voltage. Any reduction in operating voltage for a serial task will

increase latency, which cannot be recovered through parallelization by definition.

In this chapter we expand on the results from Chapter 2 by including fast boosting

effects in the near-threshold analysis, and assume that a workload can be subdivided into

serial and parallelizable components. By raising a core’s operating voltage quickly from

near-threshold to nominal, in a handful of cycles, we should further energy improvement

for the benchmarks tested. Additionally, the near-threshold voltage Vopt narrows as energy

becomes less sensitive to the serial component of a workload.
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3.2 Reexamining the Scaling Limiters

We will reexamine the key factors that limit energy-efficient scaling when a task is par-

allelized to maintain constant latency. The three scaling limiters are leakage, Amdahl over-

heads, and architectural overheads. Each of these limiters contributes to increased minimum

energy and raises the energy-efficient operating point, Vopt. However, only Amdahl and ar-

chitectural are parallelism overheads, where leakage is not impacted by fast boosting. In a

system with boosting, we will assume Amdahl overheads can be eliminated and Vopt lowered

as Amdahl represents the ‘algorithmic’ overhead of a task. For the purposes of this study we

assume this algorithmic overhead can be subdivided perfectly into parallelizable and serial

components.

3.2.1 Amdahl

As in Chapter 2, we fitted the SPLASH-2 benchmark speedups to Amdahl’s law and ap-

plied the law to the voltage-scaling calculations to obtain Vopt when considering non-ideal

parallelization. The benchmarks were parallelized to fully compensate for frequency loss

from lower-voltage operation. Figure 3.1 shows Vopt increasing in 32nm because of Amdahl

overheads. Some SPLASH-2 benchmarks, such as Barnes, have nearly ideal speedup, indi-

cating very little parallelization penalty from Amdahl overheads. Other benchmarks, such

as LUNC, reach a speedup of only 10 with 64 cores, indicating a high percentage of serial

code. These benchmarks represent a range of parallelized scientific workloads applicable to

CMPs. When Amdahl overheads are added, the Vopt operating range for most overheads

is 25 mV to 150 mV above the leakage-overheads-only case. Although the serial coefficient

is highly application-dependent, the range of Vopt for the benchmarks is small, varying by

only ∼ 150 mV. If the serial coefficient were 100 percent (that is, if none of the code were

parallelizable), then nominal voltage would be optimal.

If the serial code portion could be efficiently detected in a parallelized algorithm, then

the system could operate between two simultaneous voltage modes, depending on whether

an algorithm’s serial portion or a parallel portion were running. In a system equipped with

voltage boosting [45–47], where a single core’s operating voltage can be rapidly increased for
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Figure 3.1: Comparison of Vopt vs. Amdahl serial coefficient with and without
boosting. Vopt vs. Amdahl coefficient for all SPLASH-2 benchmarks (three labeled) in
32nm. If parallel and serial portions of code are separated, the parallel portions operate at
the lowest possible Vopt. Meanwhile, the serial portion will run at its optimal voltage of
max Vdd.
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high-performance singlethreaded operation, then the serial portion can be quickly overcome,

regaining parallelism speedup and extending the number of cores for which an algorithm can

be further parallelized. Recent work has shown that cores can be boosted within approxi-

mately 9 ns, or roughly one cycle, when operating at low-voltage clock frequencies [47]. We

modeled this case, by assuming that the serial code portion can be perfectly separated from

the parallel portion and that it is run on a dedicated boosted core operating at full volt-

age. Because frequency loss from voltage scaling of a serial portion cannot, by definition, be

compensated by parallelizing, the serial code runs most efficiently at full voltage. Similarly,

the parallel portion now runs most efficiently at the leakage-only Vopt, because all serial

portions have been removed. Thus, Vopt’s dependence on the Amdahl serial coefficient is

flat in Figure 3.1. Of course, serial code cannot be perfectly separated from parallel code,

and in a real system nonidealities would increase Vopt somewhere between the two “without

boosting” and “with boosting” extremes.

In 32 nm, energy gain by operating at Vopt decreases from nearly 6× to 1× as the

Amdahl serial coefficient increases from 0 percent to 100 percent (see Figure 3.2). Without

boosting, energy gains decrease dramatically as the Amdahl coefficient is increased and, with

a 15 percent coefficient, energy gain is only 2×, or one-third of the ideal gain. Additional

energy can be recovered by introducing boosting, where at a 15 percent Amdahl coefficient,

the energy gain is 3.3×. At an Amdahl coefficient of 50 percent, no energy can be gained by

parallelizing and operating at Vopt without boosting, while boosting can recover 63 percent

more energy.

3.2.2 Architectural

Unlike with Amdahl overheads, we did not assume architectural overheads could be per-

fectly separated into serial and parallel phases for the purposes of boosting. As a comparison,

Figure 3.3 includes the additional impact of Amdahl overheads on Vopt for architectures

without boosting. Certain benchmarks are highly parallelizable before caches and coherency

are introduced, while others have negligible architectural overheads. For example, the OCN

benchmark has almost no Amdahl overheads but significant architectural overheads. In con-
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Figure 3.2: Comparison of NTC energy gain vs. Amdahl serial coefficient with
and without boosting. Boosting can increase energy efficiency, especially with a moderate
Amdahl coefficient. Without boosting, no energy gain can be achieved above 50% serial
coefficient.

trast, the LUN benchmark has little architectural but significant Amdahl overheads. Across

the benchmarks shown, Vopt increases by no more than 100 mV with boosting as compared

to 200 mV without boosting. Thus, boosting lessens the impact of parallelism overheads.

3.3 Reexamining the Impact of Technology on NTC

As with the above, we now extend the across technology analysis from Chapter 2 to

include the effects of boosting. In the previous section, Vopt was analyzed at single 32-

nm technology node. To identify whether a voltage-scaling and parallelization guideline is

consistent across many technologies, we calculated Vopt for SPLASH-2 across six industrial

technologies when accounting for all three voltage-scaling overheads, as shown in figure 3.4

and 3.5. Circuit simulations of energy and performance were done in Cadence Spectre using

industrial foundry technology kits from 32 nm to 180 nm.

The process node affects Vopt primarily because technologies have become more leaky

with each generation due to reduced threshold voltage. Higher leakage increases Vopt; how-
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Figure 3.3: Vopt across SPLASH-2 benchmarks with and without boosting. Archi-
tectural and Amdahl overheads increase Vopt by no more than 100 mV with boosting and
200 mV without boosting. However, this varies by benchmark.

Figure 3.4: Vopt across technologies when including all three overheads without
boosting.
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Figure 3.5: Vopt across technologies when including all three overheads with
boosting. Boosting tightens the range of Vopt as Amdahl overheads are removed.

ever, the lower threshold voltage will also improve the frequency degradation with voltage

scaling, which will reduce Vopt. A key finding of this work is that, for most benchmarks

across the six technology nodes, Vopt consistently tracks 200 mV to 400 mV above the

threshold voltage without boosting and 100 mV to 200 mV with boosting. We define this

region above the threshold voltage as the near-threshold computing (NTC) region. Three

benchmarks- Barnes, FFT, and Water Spatial- were close to ideally parallelizable and are

not contained in the NTC region. However, most general-purpose, high-performance CMP

applications will have some degree of parallelization overhead and thus lie in the NTC region.

Figure 3.6 shows the median energy gains at Vopt operation, with and without boosting,

and the optimal number of cores to parallelize across to compensate for clock frequency

loss, Nopt, for Splash-2 across technology nodes. Energy gains have diminished by ∼ 1.8×

from 180 nm to 32 nm as leakage has increased and the dynamic range available for voltage

scaling has narrowed from 180 nm to 32 nm. This difference is less dramatic with less-

scalable benchmarks, because the parallelism overheads are higher and thus the amount of

voltage scaling in older technologies is limited.
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In newer technology, the energy gains from operating at Vopt without boosting instead

of at nominal voltage are ∼ 4×, and Nopt has a median of ∼ 12, and no more than 25,

cores for SPLASH-2 in 32 nm without boosting. With boosting, the energy gain in 32 nm

is 4.5×, while the median number of cores is ∼ 20 and no more than 25 cores. However,

gains by boosting are expected to improve for benchmarks that are less parallelizable, with

an Amdahl coefficient above 10 percent, but with negligible architectural overheads. This

increased energy efficiency directly increases CMP performance when limited by a thermal

budget. Thus, to maximize thermally limited CMP performance, tasks should operate in

the NTC region and parallelize on no more than 25 cores with and without boosting. The

energy gains and optimal amount of parallelism has decreased with each generation.

3.4 Conclusions

We have expanded the limits of voltage scaling for latency-sensitive applications, when

slower clock frequency is compensated by parallelization across multiple cores, by adding the

effects of fast voltage boosting. As CMPs become limited by thermal-cooling constraints,

near-threshold operation is needed to maximize the computations for a fixed thermal design

power. However, many obstacles remain before near-threshold designs can be fully realized

in commercial systems. Process variation and supply-noise sensitivity can be very high in the

near-threshold region. Increased clock skew and hold-time uncertainty further inflate timing

margins, limiting clock frequency and achievable energy gains. These effects, however, can

be mitigated through soft clocking and in-situ error detection techniques [6]. Additionally, a

fundamental challenge of boosting a core between near-threshold and super-threshold sup-

ply voltages is circuit scalability. For example, fewer repeaters are required for an on-chip

interconnect in near-threshold than in super-threshold design, because wire delay becomes

relatively faster compared to circuit delay as VDD is reduced. Thus, design optimizations to

improve performance in near-threshold may negatively affect super-threshold performance.

Developing techniques to minimize super-threshold impact is critical for realizing a high-

performance near-threshold system.
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Figure 3.6: Median energy gains and optimal number of cores, Nopt, when operat-
ing at Vopt as compared to nominal voltage for SPLASH-2 benchmarks. Boosting
regains ∼ 0.5× additional energy on average for SPLASH-2 benchmarks.
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CHAPTER 4

Fast Boosting: Reclaiming Idle Cycles

4.1 Motivation

After decades of exponential processor performance improvements, Moore’s law has now

stagnated and power limits the maximum utilization of a CMP [5]. High-performance sys-

tems have been proposed [10, 12, 48–51] that use NTC and parallelism to save energy and

increase overall performance for parallelizable applications. To optimize energy efficiency

core voltages must be adjusted depending on workload. Traditionally this is implemented

with a digital voltage and frequency scaling scheme (DVFS) controlled by software. A major

drawback of DVFS is long switching times limited by off-chip regulator delay.

Recently fast boosting DVFS techniques have been proposed that reduce core voltage

switching times from 100,000s of cycles to 10s of cycles [52, 53]. An alternative approach to

increase energy efficiency without voltage scaling is with heterogeneous architectures [54–56]

where a big core is optimized for performance while a little core is optimized for energy-

efficiency. ARM recently proposed a heterogeneous architecture using an ARM Cortex-A15

and an ARM Cortex-A7. However, migrating threads to cores is controlled by software and

requires roughly 20,000 cycles to complete.

Given improvements in fast boosting DVFS, we explore implications on single-threaded

applications, such as those common a mobile phones or desktop computers. In particular,

we characterize the granularity of idle CPU cycles, such as those caused by a cache miss, for

single-thread benchmarks and quantify energy gains for ideal conditions. Previous studies
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[52] have focused on parallel applications, such as FFT, in evaluating energy reduction

when using fast boosting. Server processors already include simultaneous multithreading to

quickly switch when a thread stalls, but this is not common on mobile platforms. Thus, we

propose using fast boosting to save power during a cache miss and compare this technique

to traditional DVFS and heterogeneous architectures.

4.1.1 Voltage Scaling

Dynamic voltage and frequency scaling (DVFS) has traditionally been used to reduce

core power consumption during long periods of low workload, when a core is mostly idle.

Reducing frequency quadratically reduces energy consumption near nominal voltage. Fig-

ure 4.1 shows an energy efficiency versus performance curve for core logic in a typical 65nm

process. Performance and energy are normalized to nominal voltage, and clock frequency is

used as a proxy for performance.

Figure 4.1: Traditional DVFS increases energy efficiency but requires hundreds of
thousands of cycles to switch. Show here from an industrial 65nm technology, energy
consumption is reduced by 60% when operating at a low voltage.

As can be seen from Figure 4.1 , a 50% reduction in performance yields roughly a 60%

reduction in energy consumption for a given task. Energy reduction is not perfectly quadratic
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due to overheads, such as leakage current. However, traditional DVFS switching speed is

limited to approximately 100,000 cycles (1 millisecond) because it is controlled by software

and actuated by an off-chip voltage regulator, creating long delay paths to switch. Thus,

with traditional DVFS, voltage is scaled at a very coarse granularity.

4.1.2 Heterogenous Architectures

An alternative approach to reduce energy consumption is with heterogeneous cores, where

heavy workloads are run on a big core and light workloads are run a little core. ARM has

proposed [55] a big/little architecture using a Cortex-A15 as the big core a Cortex-A7 as the

little core. From nominal to 50% performance reduction they find a 70% reduction in energy

consumption, as shown in Figure 4.2. The ARM Big.LITTLE architecture requires 20,000

cycles to migrate data between cores. Migration time is an order of magnitude faster than

traditional DVFS switching speed, but still requires a considerable amount of CPU cycles.

This technique is not orthogonal to DVFS, and both techniques may be implemented to

allow greater accuracy in picking an optimal operating condition based on workload.

Figure 4.2: Big.LITTLE further reduces energy consumption at 50% performance.
Since Big.LITTLE includes architectural improvements, energy consumption improvements
exceed straight voltage scaling for a fixed workload.
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4.2 Methodology

Both energy-reduction techniques, traditional DVFS and Big.LITTLE, require many cy-

cles of power supply switching or core data migration and, thus, are implemented at a coarse

granularity. To understand the implications of fast boosting DVFS techniques, which can

switch in 10s of cycles, we characterized SPEC2000 and Phoenix 2 benchmarks in GEM5

using a system emulated 64-bit Alpha architecture. Simulation parameters and benchmarks

are detailed below.

4.2.1 GEM5 Simulation

The GEM5 simulator [42] was used to simulate performance of a single-threaded in-

order and out-of-order 64-bit Alpha architecture. The Alpha architecture was simulated in

system emulation mode, so that operating system-dependent overheads were not included.

Table 4.1 summarizes the processor, cache, and memory architectural parameters used in

the simulation.

Table 4.1: Architectural Parameters for GEM5.

Parameter Value
Architecture Alpha 64-bit @ 2 GHz
L1 D$ 64 kB, 2-way set associative, 64b cache line
L1 I$ 32 kB, 2-way set associative, 64b cache line
Memory 512 MB, 30ns latency
Issues/cycle 1 for in-order, 8 for out-of-order

4.2.2 Benchmarks

Four SPEC2000 benchmarks and one Phoenix 2 benchmark was used to compare archi-

tectures. Table 4.2 lists and describes benchmarks simulated. The benchmarks were chosen

to represent a range of applications, from science (matrix multiplication) to highly single-

threaded pointer chasing (GCC), while maintaining tractable simulation time. SPEC2000

benchmarks were pre-compiled for Alpha architecture, while the matrix multiplication was

isolated from Phoenix 2 and cross-compiled for Alpha.

44



Table 4.2: GEM5 Benchmarks Simulated.

Benchmark Description
GCC C Compiler
Matrix Multiplication Matrix Multiplication
MCF Combinatorial Optimization
TWOLF Place and Route Simulator
Vortex Object-oriented Database

4.3 Results

The benchmarks listed above were simulated in GEM5 and percentages of idle CPU cycles

relative to total number of CPU cycles were recorded. For this analysis, an idle CPU occurs

when the CPU completes no actions, including: no issues, no commits, no scheduling, and

no execution. This is a very conservative definition of idle and future work could explore a

relaxed definition of consistency. Idle cycles generally occur during outstanding cache misses

and more advanced prediction, prefetching and striding could alleviate this.

Each simulation was split into segments of a fixed number of cycles of 100, 1K, 10K,

and a single segment over the entire run. For each segment of cycles, called a window, the

percentage of idle cycles (idleness) was computed and recorded. Both in-order and out-of-

order architectures were simulated in GEM5 and the results are shown below.

4.3.1 Out-of-Order Core

Figure 4.3 shows a cumulative histogram of idleness for varying window sizes of GCC

running on an out-of-order core. Windows are binned according to minimum amount of

idleness. For example, the “Idle 0%-10%” blue-colored bin for a window size of 100 cycles

is 100%. That indicates that all 100-cycle windows have at least 0% idleness. This is the

expected trivial case, since all windows have at least no idleness. As the bin threshold

increases to “Idle 10%-20%” (red bar) the percentage of windows with at least 10% idleness

is 60%. At the high 70% threshold (pink bar) the percentage of windows with at least 70%

idleness is reduced to 5%. For the purposes of voltage scaling or migrating to a slower core,

a higher percentage of windows with high percentage threshold are desirable.
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For the two techniques we explored, DVFS and core migration, we chose an idleness

threshold of 50%. This corresponds to an energy-efficiency increase of 2.5× for voltage

scaling and 3.2× for Big.LITTLE, as mentioned above.

The GCC benchmark for out-of-order, shown in Figure 4.3, has a low idleness threshold

averaged across the entire benchmark run (“Max” shown in the figure). The average idleness

is in the 30%-40%, which is below our chosen 50% idleness threshold. This indicates potential

for energy savings through the reduction techniques, but the code must be segmented into

windows to extract periods of high idleness. As the window size decreases to 10,000 cycles

and 1,000 cycles, 10% and 28% of the windows have an idleness of at least 50%. At a window

size of 100 cycles the percentage increases to 55%, indicating a fine granularity with periods

of idleness. Ideally during these high-idleness periods the core could be voltage scaled, or

the state could be migrated to a smaller core, to improve energy efficiency that could not

otherwise be extracted at a coarse, task-level granularity.

Figure 4.3: Percent windows are idle for varying window sizes. GCC benchmark
on out-of-order core. Approximately 30% of windows are idle more than not (idle cycles
50%+) with window size of 100.
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Percent of windows with high idleness for Vortex on an out-of-order core is shown in

Figure 4.4. Again, at a coarse granularity the idleness is small (¡ 5% of windows have high

idleness), but as window size is reduced the idleness increases to 25% at a window size of

100.

Figure 4.4: Percent windows are idle for varying window sizes. Vortex benchmark
on out-of-order core. Approximately 25% of windows are idle more than not (idle cycles
50%+) with 100-cycle windows.

The matrix multiplication benchmark is shown in Figure 4.5. Unlike GCC and Vortex,

this benchmark is highly regular and cache misses are rare. In this case, the idleness remains

exceedingly low with less than 5% of windows idle across all window sizes explored. This is

expected as the processor rarely stalls for this type of application. Thus, extracting idleness

is useful for general-purpose but not scientific applications on an out-of-order core.

4.3.2 In-Order Core

The SPEC2000 benchmarks were also simulated for an Alpha in-order core architecture.

A plot of idleness for GCC on in-order is shown in Figure 4.6. Across the entire program

the average idleness increased from out-of-order to between 40% and 50%. As window size
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Figure 4.5: Percent windows are idle for varying window sizes. Matrix multipli-
cation benchmark on out-of-order core. Approximately 3% of windows are idle more
than not (idle cycles 50%+) with 100-cycle windows.

is reduced to 10,000 cycles the percentage of windows with high idleness increases to over

50%, much quicker than the out-of-order case. This is to be expected as every cache miss

stalls the core. Similar results for Vortex on an in-order core are shown in Figure 4.7.

A summary of percentage windows containing high idleness (idle cycles > 50%) within

window across the SPEC2000 benchmarks simulated is given in Table 4.3. GCC and Vortex

contain the highest amount of idleness for small window sizes, while MCF (combinatorial

optimization) and TWOLF (place and route simulator) do not exceed 8% with a window

size of 100 cycles for out-of-order. For an in-order core, all benchmarks except TWOLF

experience a high idleness at small windows sizes, with MCF possessing higher idleness than

GCC and Vortex at 88% vs. 55%. On average across the four benchmarks, a window size of

100 cycles had 49% of idle windows for in-order and 18% for out-of-order. In-order plateaus

at 10,000 cycles (or potentially even at larger window sizes, though this was not simulated)

and out-of-order at 1,000 cycles.
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Figure 4.6: Percent windows are idle for varying window sizes. GCC benchmark
on in-order core. Approximately 55% of windows are idle more than not (idle cycles
50%+) with window size of 100.

Figure 4.7: Percent windows are idle for varying window sizes. Vortex benchmark
on in-order core. Approximately 55% of windows are idle more than not (idle cycles
50%+) with window size of 100.
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Table 4.3: Percentage of windows with idleness > 50% for varying window sizes. Both
in-order and out-of-order are included.

Benchmark
100 1K 10K Max

IO O3 IO O3 IO O3 IO O3
GCC 55% 32% 53% 28% 54% 11% 0% 0%
Vortex 55% 26% 46% 21% 48% 3% 0% 0%
MCF 84% 8% 85% 6% 84% 5% 100% 0%
TWOLF 1% 5% 1% 3% 0% 0% 0% 0%
Average 49% 18% 46% 15% 47% 5% 25% 0%

4.3.3 Fast Boosting

During windows of high idleness, it may be possible to voltage scale the core or migrate

data to a smaller core and save energy. Under ideal conditions where DVFS has no overhead,

energy savings are computed by

Eeff,total = (1− Pl) + Pl ∗ Eeff,slow

where Eeff,total is total energy-efficiency improvement across the entire benchmark, Eeff,slow

is energy-efficiency improvement for a slow window (assumed to be 2.5× for voltage scaling)

and Pl is percentage of time running at a low-frequency during a period of high idleness. For

example, if Pl = 50% then Eeff,total = 1.75 indicating an energy-efficiency improvement of

75%. Table 4.4 lists the energy-efficiency improvements for the four SPEC2000 benchmarks.

With a window size of 100 energy-efficiency is improved by 30% on average for out-of-order

and 70% for in-order. GCC for out-of-order has a 50% improvement with a window size of

100, but diminishes to 9% with a window size of 100,000 cycles.

Table 4.4: Ideal energy improvement using fast boosting with idleness > 50% for varying
window sizes. Both in-order and out-of-order are included.

Benchmark
100 1K 10K Max

IO O3 IO O3 IO O3 IO O3
GCC 1.8× 1.5× 1.8× 1.4× 2.62× 1.33× 1.0× 1.0×
Vortex 1.8× 1.4× 1.7× 1.3× 2.44× 1.09× 1.0× 1.0×
MCF 2.3× 1.1× 2.3× 1.1× 3.52× 1.15× 2.5× 1.0×
TWOLF 1.0× 1.1× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
Average 1.7× 1.3× 1.7× 1.2× 1.7× 1.1× 1.4× 1.0×

Figure 4.8 plots the average energy-efficiency improvement across window sizes for in-

order and out-of-order. Again, a smaller window size corresponds to a higher energy efficiency
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improvement for out-of-order. This indicates that a fast boosting technique requiring 10s of

cycles would be able to extract idleness and improve energy efficiency. Traditional DVFS

with switching times of 100,000s of cycles are unable to extract idleness for out-of-order.

Figure 4.8: Ideal energy improvement using fast boosting with idleness > 50% for
varying window sizes and averaged across four SPEC2000 benchmarks. Both
in-order and out-of-order results are shown.

4.4 Conclusions

Extracting idleness can improve energy-efficiency through voltage scaling or migrating

cores. However, the granularity is fine (typically on the order of 100s or cycles) on an out-of-

core for many benchmarks. This granularity is 3-4 magnitudes smaller than current DVFS

implementations allow, thus fast boosting benefit extractable energy efficiency by operating

at a much finer granularity. Simply scaling voltage for the entire run of a program will

severely impact windows of low-idleness and thus does not improve energy-efficiency.

Current heterogenous architecture techniques [55], though an order of magnitude quicker

than off-chip DVFS, require roughly 20,000 cycles to migrate data and thus cannot extract

substantial idleness. If migration is able to operate in 10s of cycles with low overhead, then

it could potentially save more energy than fast boosting alone. For GCC on an out-of-order

core, with a window size of 100 cycles, the improved energy-efficiency is 30% using fast
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boosting and 40% with Big.LITTLE. Combining fast boosting with Big.LITTLE has the

potential for even better energy-efficiency.

SPEC2000 benchmarks were simulated for this study, but characterizing a mobile appli-

cation benchmark (such as BBench) would indicate the amount of extractable idleness and

guide high-level architectural design. Additionally, idleness of a single-thread was explored

but many applications include multiple threads running on many cores and with simulta-

neous multithreading. This would reduce the amount of useful idleness, though the trends

would remain. Finally, overheads for voltage boosting and data migration were not included

in this study, but could be amortized over many cycles for large window sizes and so would

reduce obtainable energy-efficiency for small window sizes.
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CHAPTER 5

Shortstop: An On-Chip Fast Supply Boosting

Technique

5.1 Motivation

Transistor threshold voltages have stagnated in recent technology nodes, deviating from

constant-voltage scaling theory and directly limiting supply voltage scaling. To overcome

the resulting energy and power dissipation barriers, energy efficiency is improved through

aggressive voltage scaling, and recently there is increased interest in operating at “near-

threshold” supply voltages [6]. In this region sizable energy gains are achieved with moderate

performance loss for parallel applications.

Even for applications that parallelize fairly well, serial portions of code remain. In a

near-threshold scenario where most cores run at low voltage, it is therefore advantageous

to rapidly increase core voltage to address the need for fast execution of these serial frag-

ments [21] and respond to varying workloads. Such dynamic voltage and frequency scaling

(DVFS) is traditionally implemented with an off-chip regulator, which requires hundreds or

thousands of CPU cycles to transition to, and stabilize at, a new voltage [57]. Thus, it is

not suitable for fast voltage control that responds to fine grain code sequences. To improve

performance, on-chip low-dropout regulators have been proposed at the expense of degraded

energy efficiency and overall power dissipation. Recent work [58,59] used on-chip regulators

to improve speed. Alternatively, DVFS can be implemented on-chip with multiple power
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rails connected dynamically to a core with PMOS headers. This is faster than off-chip regu-

lators and more efficient than on-chip regulators but incurs voltage droop during transitions,

causing timing failures in other cores sharing the power rail.

5.2 Technique

We propose a new circuit technique Shortstop that addresses power supply droop seen

by other cores while boosting a core from a low (0.4V) to high voltage (1.0V) within 26

to 142 ns for ARM M3 or Intel Atom-sized cores, respectively. Shortstop adds a second

“dirty” supply rail and an on-chip boost capacitor to rapidly boost the core. The key idea

is to transition the cores to high voltage using the dirty supply, thereby decoupling the

transition from the clean high voltage supply and isolating other cores from supply droop.

In addition, we use the dirty supply’s wirebond/C4 innate parasitic inductance in a boost

converter arrangement, thereby exploiting this inductance as an asset rather than barrier

to fast supply transitions. Finally, on-chip decoupling capacitance is configured as a boost

capacitor, further aiding supply transition. The boost capacitor and additional dirty supply

are shared between multiple processors, amortizing their overhead.

The key challenge in Shortstop is to boost the supply quickly without destabilizing the

power rails used by other cores. A PMOS header implementation has three drawbacks: 1)

unavoidable wirebond/C4 inductance creates droop and ringing during fast switching; 2)

droop must be small (e.g., < 10%) so cores sharing a power rail are not disturbed; 3) adding

on-chip decoupling capacitance to the power rail to reduce droop and ringing incurs large

area costs.

Shortstop addresses these issues through the use of dirty VDD, Vdirty, (Figure 5.1).

Vdirty is connected to the high supply voltage (e.g., 1V) off-chip and does not require

additional off-chip regulation. Since the Vdirty supply is used only for transitioning a single

core at a time, it does not need to be as robust as nominal operating supplies. This greatly

reduces overhead since Vdirty need only use a small number of pads that are amortized

across many cores. Shortstop consists of one header block per core and a single shared boost

block. Figure 5.2 illustrates the basic operation of Shortstop. A core is initially connected
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to the low voltage supply Vlow and the on-chip capacitor is charged to Vhigh (Step 1).

The core is then switched from Vlow to the capacitor, which partially boosts the core while

Vdirty is simultaneously shorted to a dirty ground to energize Vdirty’s inductance, similar

to boost converter operation (Step 2). The on-chip capacitor must be large, similar to the

intrinsic capacitance of a core, but is shared across several cores to reduce area overhead.

Once charge sharing is complete the core is switched from the capacitor to Vdirty supply

(Step 3). Since by this time, significant energy has built up in the Vdirty inductor, Vdirty

quickly boosts the core to full voltage.

Figure 5.1: Shortstop high-level concept compared to other boost approaches.
Traditional DVFS uses off-chip regulators to adjust core voltage (top left), but takes 100s -
1000s of cycles to adjust. A PMOS header approach (bottom left) is very fast, requiring a
handful of cycles, but destabilizes the high power supply through droop and ringing. Short-
stop (right) uses PMOS headers, but adds a Vdirty power supply acting as a boost converter
and an on-chip boost capacitor to boost a core in several cycles without destabilizing the
Vhigh supply.

As the core reaches the target high-voltage supply, it is switched from Vdirty to the

nominal Vhigh supply (Step 4). Since the core is already charged to a level near Vhigh, this
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Figure 5.2: Steps of Shortstop to boost core supply rail. The five steps include: 1)
The core is initially connected to the low voltage supply; 2) the boost cycle begins by charge
sharing between a core and on-chip capacitor for a fast initial boost, while a dirty supply is
shorted to ground to energize the wirebond/C4 parasitic inductance; 3) after charge sharing
completes, the core is boosted the remaining amount to the high voltage by shorting to the
Vdirty supply rail; 4) when the core reaches the target high voltage, it is switched to the
stable Vhigh supply and the on-chip capacitor is connected to the Vdirty rail to quickly
recharge; 5) once the on-chip capacitor is charged to its peak value, the Vdirty supply is
disconnected and clamped to the Vhigh supply to prevent ringing.
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step does not incur significant droop or otherwise destabilize the Vhigh supply, which thus

can be shared by a number of other cores. However, Vdirty will incur significant ringing and

actually overshoot the high supply voltage, which is undesirable. Two techniques are used to

avoid this ringing: 1) when Vdirty is disconnected from the core, it is immediately connected

to the on-chip capacitor to use the remaining wirebond/C4 inductance energy to charge the

capacitor, preparing it to boost another core. When Vdirty has transferred its energy to

the boost capacitor and reaches its maximum voltage, Vdirty is disconnected and clamped

to Vhigh to immediately suppress any further ringing (Step 5). Since Vdirty’s inductor has

was discharged when clamped, and Vdirty has no on-chip decoupling capacitance, this step

does not disturb Vhigh.

The Shortstop boosting steps must be timed accurately (100s of ps) to function efficiently.

This is accomplished using programmable on-chip delay generators that are tuned for a par-

ticular package and chip configuration. Alternatively, high-speed comparators [60] could be

used in an automated timing architecture. The on-chip timing circuitry includes a 1.25 GHz

asynchronous clock generated by a ring oscillator, 16 delay generators with fine (25 ps) and

coarse delay (800 ps) steps, and maskable XOR trees that combine multiple timing signals

into arbitrary digital waveforms for the switches. The test chip architecture (Figure 5.8)

includes two on-chip variable capacitors/current sources to emulate large cores, as well as

an actual implemented ARM Cortex M3 core. In addition to timing control circuits, head-

ers, and a boost capacitor, on-chip samplers monitor power rails using a sample-and-hold

averaging technique [61] that enables an effective bandwidth of ∼ 40 GHz.

Shortstop requires precise timing of header and footer switches for correct and efficient

boosts of a processor core’s power rail, with timing accuracy on the order of 100ps in a

wirebond version [53]. Failure to correctly time switches can lead to excessive ringing,

shorting, and droops, which waste energy, decrease efficiency, and can lead timing violations.

Shortstop includes two elements for accurately timed switch control, delay generators and

maskable XOR trees, shown in Figure 5.3. The timing system is triggered from a latched

boost go signal and includes 16 delay generators that each assert after a chosen amount in

time, set by a scannable configuration bits. The maskable XOR trees select a subset of these

delayed signals to generate pulsed switch enables, shown in Figure 5.4. In the example, three
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delay generators assert at three points in time: T1, T2, and T3. The XOR combines all

three delay generators to assert a pulse from T1 to T2, and reassert at T3. The XOR could

have been set to exclude delay generator 1, in this case the XOR output would have been a

pulse asserted from T2 to T3.

Figure 5.3: Complete system of delay generators, XOR trees, force blocks. A shared
ring oscillator, enabled with the boost go signal is used to provide coarse delay adjustment
between the delay generators. Since the delay generators count edges of the ring oscillator, all
of the delay generators are synchronized for coarse adjustment. Within each delay generator
is a tunable delay chain that provides fine adjustment. Configurable XOR trees are used
to generate pulses from the delay generator step outputs. Force blocks directly before the
switches are used to prevent glitching and safely reset the timing system.

Figure 5.4: Principle of delay chain + XOR tree operation. Three delay chains select
points in time T1, T2, and T3 (top of figure). The XOR tree combine the three points to
create a pulsed output (bottom of figure).

The first silicon prototype of Shortstop [53] includes 16 delay generators, though in

practice Shortstop only requires five delay generators: (1) charge share core to cap; (2) start
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shorting of dirty supply rails to charge parasitic inductor; (3) connect core to dirty supply rail

for inductive boost; (4) connect core to high supply rail; (5) disconnect cap from high supply

rail once charged and no energy remains in parasitic inductor. The extra delay generators

were included on the first prototype to provide allow flexibility in testing different boost

arrangements, and because each header/footer switch was split into sub-switches of varying

sizes to allow gradual actuation. The sub-switches were sized in a binary fashion, so that

switch strength could be increased over time by correctly timing additional delay generators

to larger switches sizes.

A block diagram of the delay generator is shown in Figure 5.5, and each generator includes

fine- and course-grained controls. The fine-grain delay is adjusted by multiplexing between

taps of a 31-buffer delay chain, while the course delay is adjusted by counting cycles of an

asynchronous fast clock. The fast clock is enabled through the boost go trigger signal and,

if the coarse adjustment count is zero, this trigger is fed directly into the 31-element delay

chain. The fine delay adjustment can be measured by putting the delay generator into a

loopback mode, which configures the delay chain into a ring oscillator arrangement. The out

of the loopback mode is divided down by a series of toggle flops, so that it can be observed

off-chip. An additional loopback chain can be added to the ring oscillator so that max time

violations do not occur in the toggle flops.

Figure 5.5: Delay generator element. Shortstop includes 16 of these delay elements.
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A schematic of the maskable XOR tree, shown in Figure 5.6. The circuit is very simple,

allowing any or all of the 16 delay generator outputs to be used to enable/disable the switches,

but care must be taken that each path is as balanced as possible to not introduce skew

between different delay inputs changing the output value. A 17th input to the XOR tree is

used to select polarity of the XOR output, i.e. whether the output is HIGH or LOW when

no delay blocks have been asserted. This is used to match whether a header/footer should

be enabled or disabled at the start of a boost cycle.

Figure 5.6: Maskable XOR trees to select a subset of delay elements to control
each switch. An additional input controls polarity, whether the switch is active high or
low.

When the delay generators are reset, the generator outputs may propagate through the

XOR at different times, causing unintended glitching on the header/footer switches. This

is very undesirable since the core supply rail voltage may fluctuate, or power sources may

be accidentally shorted. A force block, Figure 5.7, is used between the XOR tree and the

header/footer switches, where a HIGH or LOW value is “forced” glitch-free until the delay
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circuitry has been reset completely. A scan chain bit controls the force bit value of the

output, and a force en is driven by a control FSM while the delay circuitry is being reset.

This ensures the switch inputs are held at stable values in between boosts.

Figure 5.7: Force block to prevent glitching on switches. The scan signal force bit
configures the value of the bit, while force en actuates forcing the output to the switch to
the programmed value.

5.3 Measured Results

Shortstop is validated in a 28nm CMOS test chip measuring 3.9 mm2 (Figure 5.9). Ta-

ble 5.1 summarizes the test chip’s specifications. The chip is wirebonded to an 88-pin QFN

package and a 108-pin ceramic PGA package with two wirebond lengths to vary package par-

asitics. Figure 5.10 shows silicon measurements comparing boosting time for the included

M3 core using a baseline PMOS header based approach and Shortstop. The 1-pin baseline

assumes Shortstop’s hardware overhead can be amortized across multiple cores and hence

is negligible, while the 2-pin baseline is a conservative estimate where the number of dirty

supply pins equals the number of high supply pins. For the M3 core, boost latency and

droop are improved by 1.7× and 6×, respectively.

Figure 5.11 compares supply droop and boost latency, defined by rise time within 10%

of Vdd, for the baselines and Shortstop across different emulated core sizes. As core size

decreases, Shortstop exhibits slightly increased gains against baselines, while supply droop

is relatively constant at 6× and 3× for the 1-pin and 2-pin baseline, respectively. For a
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Figure 5.8: Test chip architecture for Shortstop. The Shortstop test chip architecture
includes on-chip variable boost and core capacitors to mimic large cores. An ARM Cortex-
M3 and on-chip samplers are also included on the test chip. The on chip samplers are based
on [61] can observe power supply transients by 20 point averaging a sampled supply voltage
provided by an analog mux. The sampler was sized to hold values for roughly 1 ms with
minimal leakage so that boosting experiments can be repeated and observed.
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Figure 5.9: Photomicrograph of 28nm test chip and chip specifications. The chip
measured 3.9 mm2 and was wirebonded to CPGA and QFN packages. Variable core and
boost capacitors dominate chip area, to emulate different boosting scenarios.
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(a) Vcore on-chip measurement.

(b) Vhigh on-chip measurement.

Figure 5.10: Measured rail voltages for 3 nF core (QFN package). For the M3 core,
boost latency is improved by 1.7× and and droop reduced by 6×.
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Table 5.1: Shortstop Test Chip Specifications.

Technology 28 nm
Area 3.9 mm2

Processor Core ARM Cortex-M3
Max Core Cap. 15 nF
Max Boost Cap. 5 nF

Package Variants
88-Pin QFN (short bond wires)
108-Pin CPGA (med. bond wires)
108-Pin CPGA (long bond wires)

15 nF core (an Intel Atom-sized core), boost latency is improved by 1.6× in addition to

a 6× droop reduction. Figure 5.12 shows the impact of boost capacitance size on supply

droop and latency indicating that 30-40% of intrinsic core capacitance is sufficient to obtain

most of Shortstop’s performance gains. Finally, Figure 5.13 shows Shortstop maintains a

1.4× latency improvement and 4× droop reduction across the three packages tested. As

package parasitics decrease, the baseline latency and droop improves but this is balanced by

decreased parasitics on the dirty supply which shortens boost time to energize the parasitic

inductance.
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(a) Latency improvement vs core capacitance.

(b) Droop improvement vs core capacitance.

Figure 5.11: Measured latency/droop improvement for varying core cap. (QFN
package). As core size decreases, Shortstop exhibits slightly increased gains against base-
lines. Supply droop is relatively constant with core size.
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(a) Latency improvement vs boost capacitor as a percentage of core
capacitance.

(b) Droop improvement vs boost capacitor as a percentage of core
capacitance.

Figure 5.12: Measured droop and latency for varying boost cap. (QFN package).
A boost cap sized for 30-40% of intrinsic core capacitance is sufficient to achieve most of
Shortstop’s performance gains.
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(a) Latency improvement vs wirebond length.

(b) Droop improvement vs wirebond length.

Figure 5.13: Measured performance improvements with varying packages and
wirebond lengths. Shortstop is fairly insensitive to these wirebond lengths.
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CHAPTER 6

Shortstop FC: A Fast Boosting Flip-Chip

Implementation

6.1 Motivation

The fast power supply boosting technique presented in Chapter 5 was targeted for wire-

bond designs. However, modern processors, both high-performance server and mobile, are

packaged as flip-chip. Instead of thin wires with relatively high inductance, flip-chip pack-

aging uses bumps to connect high-density power and I/O signals to a substrate or circuit

board. Because Shortstop leverages the parasitic inductance of a package, demonstration in

flip-chip, with lower parasitic inductance, is necessary.

The second-generation design of the technique from Chapter 5, named Shortstop FC,

and is an evolution of the previous prototype that has been extended to include a flip-chip

implementation, improved power distribution and boost topology, and an automated tuning

circuit to calibrate delay generators used with the boosting technique.

6.2 Improved Architecture

The Shortstop architecture was improved to reduce the number of headers required in the

core area and metallization usage in the power grid by containing on-chip boost capacitor

and transient dirty supply power rails within the shared boost block instead of over the
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core area, Figure 6.1. Instead an intermediate on-chip Vboost supply is distributed over core

areas, which is connected between the boost capacitor and dirty supply within the boost

block. This reduces the need for one PMOS head in the core areas at the cost of two PMOS

headers in the shared boost block. However, since there are many more cores than shared

boost blocks less area is consumed with the core area for power switches.

An important goal of the Shortstop FC architecture is improved power delivery. A

bottleneck of the wirebond prototype (Chapter 5) was centrally located power switch headers

and footers, which required longer power stripes and a weaker power grid than a traditional

design would require. This led to increased IR drop in the power delivery network. To

remedy this, Shortstop FC distributes the power switches across core area on a chip, not

unlike standard power gated designs.

The boost technique was updated to include the state of the new topology, shown in

Figure 6.2, but otherwise unchanged from the original Shortstop technique. The state of the

transistors in shared boost block is shown on the left of each step in the figure and the core

header switch shown on the right. Unlike the original Shortstop technique, the Vboost header

within the core domains is used during the boost transition, while the shared boost block

multiplexes Vboost between the on-chip boost capacitor and the Vdirty transient boost supply.

6.3 Automatic Tuning Algorithm

Tuning of the first Shortstop prototype is done by hand through scannable flip-flops

to change delay values, and observing the supply rails with on-chip, continuous-time sam-

plers. However, this is impractical for a production design, since expensive testing time

is required, instead an automated tuning algorithm is preferable to automatically set delay

values. A commercial implementation of Shortstop could implement a simple finite state ma-

chine (FSM) paired with an on-chip comparator to tune the delay generators and minimize

boost latency, as proposed here in Figure 6.3.

The on-chip comparator’s negative input pin in connected to a voltage reference that is

slightly below the target, clean, high-supply rail voltage, and the positive pin is connected

to the core supply rail (Figure 6.3). The comparator is clocked using the core to clean,
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Figure 6.3: Shortstop FC tuning concept. A comparator is clocked on the switch of the
core supply from Vdirty (Vboost with the improved architecture) to Vhigh. The comparators
returns a ‘0’ or ‘1’ depending on if the core supply was above a droop threshold or not.

high-supply header switch enable signal, so that the comparator will always trigger when

the core is connected to the clean supply rail. Thus, the comparator asserts if the core was

at the clean, high-supply rail voltage when connected to the high supply rail, and deasserts

if it was below. The goal is to raise the core’s voltage to the high supply rail voltage before

it is connected, so that droop from raising the core’s intrinsic capacitance is small, while

minimizing time to boost.

Figure 6.4 shows the basic steps of the tuning FSM. The FSM works by repeatedly

boosting the core, reading comparator outputs, adjusting delay values, and boosting the

core again with the updated delay values, until an optimal set of delays is found. In step

1, the core is connected from the low supply to dirty supply at the very start of the boost

cycle, when a boost request arrives. During step 1, the delay of of connecting the core from

the dirty supply to the clean, high-supply rail is gradually increased until the comparator

resolves to a ‘1’ instead of “0.”

Delay values in each iteration of step 1 are increased in large steps, to reduce the time

needed to tune the system. Step 2 then slowly decreases the core to clean supply delay time

in fine steps, while also averaging over multiple cycles, until the comparator starts to return
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a ‘0.’ This indicates that the core is very close to the high-supply voltage, and the delay

value is used as a baseline boost latency.

The remaining steps, 3 and 4, reduce the boost latency through charging of the parasitic

inductance and charge sharing of the on-chip boost capacitor with the core. Delays for the

parasitic inductance energize time and boost capacitor charge sharing time on gradually

increased until the comparator starts reliably asserting a ‘1’ instead of ‘0,’ indicating that

the boost latency has been improved as the core supply rail is now slightly higher than

when using the previous delay values. When this happens, the FSM goes back to step 2,

slowly reducing the delay for the core to be connected to the clean, high-supply rail until

the comparator starts to assert a ‘0,’ thereby creating a new baseline delay value for steps

3 and 4 to try to improve. This process repeats until no additional changes of charge share

or inductor energize time causes the comparator to assert a ‘1,’ indicating the system is at a

minimum boost latency. To better avoid local minimas, the algorithm can also be modified

to decrease charge share or shorting times if increasing times do not yield improved boost

latencies. In implementation the maximum amount to increase and decrease charge share

and short times are completely configurable through scan bits. The remaining steps, 3 and 4,

reduce the boost latency through charging of the parasitic inductance and charge sharing of

the on-chip boost capacitor with the core. Delays for the parasitic inductance energize time

and boost capacitor charge sharing time on gradually increased until the comparator starts

reliably asserting a ‘1’ instead of ‘0,’ indicating that the boost latency has been improved as

the core supply rail is now slightly higher than when using the previous delay values. When

this happens, the FSM goes back to step 2, slowly reducing the delay for the core to be

connected to the clean, high-supply rail until the comparator starts to assert a ‘0,’ thereby

creating a new baseline delay value for steps 3 and 4 to try to improve. This process repeats

until no additional changes of charge share or inductor energize time causes the comparator

to assert a ‘1,’ indicating the system is at a minimum boost latency. To better avoid local

minimas, the algorithm can also be modified to decrease charge share or shorting times if

increasing times do not yield improved boost latencies. In implementation the maximum

amount to increase and decrease charge share and short times are completely configurable

through scan bits.
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6.4 Physical Implementation

The test chip includes sixteen emulated core areas, of varying sizes, that can be connected

and disconnected from power rails for different boosting scenarios. As mentioned above, to

minimize area and metallization overhead in core areas, the boosting topology was optimized

to reduce a set of header switches in the core area at the cost of two additional sets of header

switches in the share boosting block. Figure 6.5 shows the proposed top-level floorplan,

including the power and I/O bump pattern. Boundaries of the core areas are shown by the

dashed purple, with four sized by 200 µm× 200 µm, two sized 200 µm× 400 µm, eight sized

400 µm×400 µm, and two sized 800 µm×800 µm. Additionally, four on-chip boost capacitors

and two individual boost shorting areas are included in the center of the chip, and shared

amongst the 16 cores.

Instead of a single core capacitor and boost capacitor as was included on the first Short-

stop prototype, Shortstop FC is a modular design, shown in Figure 6.5. Instead of a single

adjustable core capacitor, the chip is composed of many small core areas, each with adjustable

current sources, fixed decoupling capacitors, and virtual supply rails. Each core supply can

be individually connected to the statically high or low supply, or boosted through Shortstop.

Within each core area is a test island that includes samplers and comparators for the test

harness and automatic tuning circuitry. The test harness and shared boost block (with the

boost capacitors) are centrally located and shared among the core areas.

As of the writing of this dissertation, a test chip implementing the revised Shortstop FC

architecture in a 40nm bulk CMOS process has been designed and fabricated and is undergo-

ing assembly. The custom BGA packaging substrate includes three on-package inductors to

increase parasitic inductance of Vdirty supply without incurring added cost of using discrete

components or on-chip inductors. Results are planned to be published in a conference or

journal paper once testing is completed.
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Figure 6.5: Top-level test chip layout. Colored circles indicate flip-chip bumps. I/O
signal bumps are around the chip perimeter, while power is supplied on all inner bumps.
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CHAPTER 7

Near-Threshold in FinFET Technologies: Impact of

Process on Voltage Scalability

7.1 Motivation

Near-threshold (NT) was systematically defined in chapters 2 and 3, and the NT region

was evaluated across planar nodes (180 − 32 nm) to observe technology trends. However,

power density is becoming an even greater problem as transistors continue to shrink in size.

Figure 7.1 shows example scaling from 40nm to 7nm, derived from publicly available data. In

7nm, power of a core logic has improved by roughly 4.7× yet can fit in an area 19× smaller,

thus power density has increased by 4.2×. As shown in Chapter 2, NTC energy improvement

is becoming less effective with each generation in planar nodes, with only a 4× energy gain

in 32nm for performance sensitive workloads. While this gain is not insignificant, NTC is

needed most in new technology nodes because of increased power density, yet energy gain in

32nm is nearly half of the gain in 180nm (7.5×).

Foundries have initiated a fundamental switch from planar to FinFET transistors at the

22 − 16 nm node and below, opening a new chapter in Moore’s law. However, NTC in

FinFET is largely unexplored. FinFET differs significantly from planar technology, with

much improved channel characteristics, which have the potential to dramatically improve

near-threshold performance.
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As with the previous chapters, evaluation of near-threshold is considered for performance-

sensitive workloads, specifically when latency is fixed to that of a single core at nominal

voltage. Alternatively, nominal operation targets absolute single-thread performance (min-

imizing latency), and ultra-low, sub-threshold supply voltages target performance insen-

sitive applications, such as low-power sensors. Initial results for predictive 7nm FinFET

models show energy gain improvements over planar technology for performance insensitive

workloads. However, the nominal supply-targeted 7nm device has poor energy gain when

performance sensitive. Through near-threshold analysis we re-target the 7nm device for near-

threshold, improving low-voltage energy consumption by 60%. Our results show greater than

8× energy-efficiency improvement for an NT-targeted device in FinFET, reversing trends

seen in planar technology and even surpassing 180nm energy gains. When constraining the

area of a system to that of a single core at 40nm, 2.5× throughput gain is possible for a fixed

power budget by voltage scaling, as compared to nominal in 7nm FinFET, while in 20nm

planar only 1.3× is possible through voltage scaling. When area is unconstrained, 8.2× is

possible in 7nm FinFET and 3.3× in 20nm planar.

In Section 7.2, we begin by comparing a predicted 7nm FinFET device to trends seen in

previous studies. In Section 7.3 we present an analytical model of near-threshold’s energy

gain and, by using this model in Section 7.4, identify the key device characteristics that are

responsible for near-threshold performance in FinFETs. With this knowledge, in Section 7.5

we co-optimize a FinFET device targeted for NTC operation, which exhibits a significant

reduction in energy over a standard low standby power (LSP) device for performance sensitive

applications. We conclude the chapter with an extension of our previous studies [10, 11] by

comparing NTC performance in three planar technologies and three FinFET technologies

from 40nm to 7nm. Finally, in Section 7.6 we add effects of variation margining, area budget,

and back-end-of-line parasitics when comparing across technologies—additional effects that

were not previously well-modeled.
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7.2 Near-Threshold in 7nm FinFET

7.2.1 Background

Voltage scaling can be viewed as a continuum of three operating scenarios from tradi-

tional nominal voltage operation to ultra-low voltage operation (Table 7.1). Nominal voltage

operates a core at its peak clock frequency, therefore single-threaded performance is maxi-

mized. However, nominal voltage also consumes the most power and thus limits the system

to the fewest number of cores that can be active within a thermal design power budget.

Scaling down voltage to the ultra-low, sub-threshold region greatly reduces power demands,

allowing for far more cores to operate within a power budget. However, voltage scaling also

significantly degrades clock frequency, so ultra-low voltage is not suitable for workloads that

are latency sensitive.

Voltage: Near-Threshold

Goal:
Minimize Energy

(Performance 
Sensitive)

Latency:
Fixed to Latency of
1 Core @ Nominal

Nominal

Maximize
Single-Core

Performance

Minimized

Ultra-Low

Minimize Energy
(Performance 

Insensitive)

Unconstrained

Core Core Core

Core Core Core

Task

Task Task Task

Task TaskSystem 
Configuration:

Core Core

Core Core

Task

Task

Task

Core

Cores
within TDP:

Many Cores Some Cores Few Cores

Operating Voltage Continuum
Low
Slow

High
Fast

Table 7.1: Voltage scaling operating scenarios, from ultra-low supply voltages to
traditional nominal-voltage operation.
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Near-threshold (NT) balances ultra-low and nominal operating modes by parallelizing

a task at low voltages to regain lost performance from clock frequency degradation [6]. In

Pinckney et al. [10], we developed a systematic methodology for defining the near-threshold

operating point and analyzed NTC energy and performance using transistor models of six

industrial technology nodes from 180nm to 32nm. In order to consider performance sensi-

tivity, latency is fixed to that of the task running on a single core at nominal voltage. As

voltage is lowered to NT, clock frequency decreases and subsequently latency increases. How-

ever, this latency increase can be balanced through speeding up the task through parallelism

(Table 7.1, middle). This is the definition of near-threshold we use in this work.

Achievable energy efficiency is limited by ease of parallelism and characteristics of the

CMOS process [10]. The three key limiters to NTC scaling are: (1) Leakage overhead: as core

voltage decreases, the obtainable clock frequency decreases. Consequently, leakage power is

integrated over longer time periods for a given task, thus leakage energy dominates over

dynamic energy at very low voltage. (2) Amdahl overhead: includes the algorithmic ineffi-

ciencies of parallelization on ideal hardware. (3) Architectural overhead: adds architectural-

specific sources of inefficiency, such as non-ideal inter-core communications and memory

hierarchy, including caches.

Pinckney et al. [10] also showed how the optimal NTC operating voltage (Vopt) tracks

roughly 200− 400mV above threshold voltage for the benchmark suite. This constant sup-

ply voltage offset above Vt results in an energy gain that decreases progressively with each

generation since supply voltage drops from technology to technology, reducing the propor-

tional difference in voltage between near-threshold and nominal supplies. In 180nm the

median energy gain from operating at NTC instead of nominal voltage was approximately

7.5× across the benchmarks included, while maintaining throughput and latency. Scaling to

newer technologies showed the downward trend in the benefits of operating at NTC, and in

32nm, the most recent technology node included in that study, median energy gain dropped

to approximately 4×. Hence this study projected that NTC was becoming progressively less

effective with process scaling.

Similarly, the number of cores needed to parallelize the application and maintain its

latency in NTC decreased from 20 in 180nm to 12 in 32nm. In contrast, the number of avail-
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able cores on a chip multiprocessor has increased from generation to generation, as transistor

packing density has improved. Thus, processors are constructed with ever increasing number

of cores while the useful amount of cores for energy-efficiency has decreased. If this trend

continues, the realizable energy-efficiency gains will continue to decrease, and the problem

of dark silicon will remain as many cores go unused, even with NTC.

However, at 22− 16nm and below, foundries are shifting to FinFET technologies, which

differ from planar technologies by extending the transistor into three dimensions [62]. The

transistor gate is controlled on three sides, instead of on one side as with planar technologies,

leading to improved leakage, channel control, and packing density, among other advantages.

Yet, differences between planar and FinFET within the NTC region have not been well in-

vestigated. The previous planar study [10] only included results from planar technologies

as industrial FinFET models were unavailable to the authors at the time of publication.

Without industrial models, it was unclear how near-threshold operation would affect Fin-

FET, compared to planar. In this work, we investigate FinFET devices operating in the

near-threshold regime, and our findings show that FinFETs exhibit much improved near-

threshold performance and help mitigate dark silicon even in single-digit nanometer tech-

nology nodes. While FinFETs are praised for better channel control, drain-induced barrier

lowering (DIBL), and subthreshold slope, the impact of these improved device characteristics

on near-threshold operation has, to our knowledge, never been published.

7.2.2 Methodology

The methodology used in this work for evaluating near-threshold in FinFET is similar

to the simulation framework proposed in the prior planar near-threshold studies [10, 11] to

estimate energy gains and frequency loss. Our framework is split into two components:

circuit characterization, to extract circuit delay and energy, and architectural models, to

account for parallelism overheads. Predicting future technology nodes is difficult as many

technological challenges have yet to be overcome. The International Technology Roadmap for

Semiconductors (ITRS) provides estimates of many device parameters for high-performance,

low-power, and SRAM transistors. However, ITRS reports are driven by future technology
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requirements, and not necessarily representative of what is realizable. Therefore, ITRS tends

to provide an optimistic outlook while industry estimates are more conservative [5].

Additionally, while circuit performance at nominal can be estimated with tabulated data

from ITRS, voltage scalability cannot. Device models are essential to characterize perfor-

mance while voltage scaling to near-threshold because ITRS does not include energy and

delay curves as supply voltage is lowered. A well-known source of publicly available device

models for multi-gate transistors is Arizona State University’s Predictive Technology Mod-

els (PTM) [63], which are based on MOSFET scaling theory, ITRS, and other published

data down to 7nm. However, these models being aligned with ITRS have very aggressive

projections on dimension scaling and are not in line with industry trends [64–66]. For this

work, ARM provided predictive technology models that include effects specific to FinFETs.

The circuit simulations in this work use HSPICE BSIM Level 72 for 7nm, 10nm, and 14nm

FinFET, and Level 54 for planar 20nm, 28nm, and 40nm models, of which all sets were de-

veloped by ARM based on published numbers, historical trends, and informed assumptions

and calculations.

The canonical circuit simulated to characterize voltage scalability is a chain of thirty-one

inverters, with a 15% activity factor, to emulate reasonably deep processor pipelines. Though

actual critical paths are composed of more complex gates, we found inverters are reasonable

for comparing performance and energy between operating voltages and technology. Circuit

simulations also include back-end-of-line wire models and within-cell extracted parasitics,

provided by ARM, where explicitly mentioned in later sections.

Prior work [10] architecturally evaluated near-threshold with the SPLASH-2 benchmark

suite [67] using the gem5 cycle-accurate microarchitectural simulator [42]. SPLASH-2 con-

sists of twelve scientific benchmarks intended to evaluate parallel systems, and was previously

chosen because the benchmarks have been parallelized, so they readily scale to increased

number of cores. Ease of parallelism varies by benchmark and, when fitted to Amdahl’s

equation [41], the Amdahl serial coefficient is up to 8%. For the purposes of this work, to

illustrate parallelism sensitive voltage scaling, we picked an Amdahl serial coefficient of 2%

which is higher than all but two of the SPLASH-2 benchmarks. For additional analysis of

near-threshold on the serial coefficient, please refer to [10].
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Custom MATLAB scripts combine circuit scaling to derive total energy from dynamic

energy, static power, and parallelism overhead. The minimum energy point is found from the

total energy, after overhead sources are included. Additionally, we expand on prior studies

by constraining area in Section 7.5.2.

7.2.3 7nm FinFET Results

An initial 7nm FinFET predictive model was provided by ARM and run through the

near-threshold characterization framework. The device’s subthreshold leakage is approxi-

mately 0.6 nA/µm of channel width, which is essentially a low-standby power (LSP) de-

vice that foundries have shifted towards [68]. A comparison of the effectiveness of the

7nm device as compared to the previous planar nodes from [10] is shown in Figure 7.2,

for performance-sensitive workloads (Amdahl serial coefficient Ps = 2%) and performance-

insensitive workloads. The results of the LSP 7nm device are initially unimpressive, with

a 12% reduction in near-threshold energy-efficiency gain as compared to 32nm planar when

performance sensitive. However, we observed a 130% increase in energy-efficiency gain for

performance-insensitive workloads, deviating from the previous trend of effectiveness de-

creasing generation to generation.

Understanding why the 7nm FinFET device is better than recent planar nodes for

performance-insensitive workloads is the primary motivation for this work, along with evalu-

ating how to improve energy efficiency for performance-sensitive workloads. FinFET channel

characteristics are much better than planar, namely FinFETs have much steeper subthresh-

old slope to allow lower Vt (thus lower Vdd) operation, better short-channel effects (DIBL),

improved packing density, etc. However, how each of these characteristics impact near-

threshold has not been explored, thus this work sets to analyze and understand how each

individually effects voltage scalability. Using this understanding, we explain why FinFET

is intrinsically better for near-threshold than planar, and how to modify the device for even

better near-threshold performance, in the following sections.
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Figure 7.2: Comparison of energy gain for performance sensitive and insensitive
workloads, from previous planar study [10] to predicted 7nm FinFET device.
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7.3 Analytical Model

A simple analytical model is introduced to better understand underlying effects on device

parameters. Though this model does not have high accuracy, especially for recent technology

nodes, it is beneficial in understanding the effects of device parameters on NTC performance.

The energy of a task can be split up into two categories: dynamic and static, shown in

Figure 7.3, and given by the equation:

Etotal = Edynamic + Estatic (7.1)
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Figure 7.3: Total energy of a circuit is composed of dynamic and leakage energies.
Total energy is minimized when dynamic and leakage slopes match.

87



Dynamic energy is the working energy needed to switch inputs of transistors and values

of wires for calculations or communications during a task’s execution. Dynamic energy can

be modeled as a charge on a capacitor, and thus varies quadratically with supply voltage:

Edynamic ∝ CswitchV
2
dd (7.2)

Static energy is caused by leakages of a circuit regardless of if a task is executing or not.

Static energy is usually dominated by subthreshold leakage through a transistor’s source and

drain and is dependent on the supply voltage and the period of time for a task to run.

Estatic ∝ IleakVddTtask (7.3)

The time for task completion depends inversely on the clock frequency of a core, which

to first order, is inversely proportional to circuit delay (Figure 7.4):

Ttask ∝ 1/f ∝ Tlogic delay (7.4)

Additional effects, such memory latency or peripherals, will change this relationship of

completion time to clock frequency. While the behavior is not accurate for more complex

systems, it is sufficient to understand voltage scaling behavior. Subthreshold leakage, when

a transistor is in complete cutoff (gate-source voltage is 0V), can be modeled as [69]:

Ileak = Ids0 exp
−Vt
nVT

(1− e−Vdd/VT )

where Ids0 is the current at threshold Vt, n is a process-dependent constant, and VT is

the thermal voltage (kT/q, or approximately 26 mV at room temperature). Since supply

voltage is typically much above VT , even when near-threshold, we can simplify this equation

as:
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Ileak = Ids0 exp
−Vt
nVT

(7.5)

Thus to first-order, excluding effects such as drain-induced barrier lowering, leakage cur-

rent is not a function of supply voltage, as long as supply voltage is reasonably high. There-

fore, scaling of static energy with supply voltage is dependent on Vdd directly and the task

completion time, but leakage current is fixed. As we discuss device characteristics in the next

section, we will re-introduce drain-induced barrier lowering and other non-ideal I-V effects

that impact static and dynamic energy consumption.

Logic delay is proportional to amount of charge needed to switch a transistor gate,

Qswitch = CswitchVdd, divided by the rate it can be discharged, which is modeled using the

alpha power law of a transistor [29], Idsat ∝ (Vdd−Vt)α. Therefore, task completion time can

be modeled as:

Ttask ∝
1

f
∝ Vdd

(Vdd − Vt)α
(7.6)

From the above relationships, the dynamic energy monotonically decreases with supply

voltage while the leakage energy initially decreases because Ileak and supply voltage drop.

However, the task completion time rises exponentially at near-threshold voltages, and thus

static energy increases as Vdd continues to be lowered. Energy is minimized when the margin

cost of dynamic and static energy are in balance, in essence when the dynamic energy gain

of scaling down voltage is equal to the marginal cost of static energy:

δEdynamic
δVdd

= −δEstatic
δVdd

(7.7)

Marginal gain of dynamic energy is directly proportional to supply voltage through

δEdynamic
δVdd

= 2CswitchVdd ∝ Vdd (7.8)
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while static energy consumption marginal cost is

−δEstatic
δVdd

=
δ

δVdd
[−VddTtask]

=
δ

δVdd
[−Vdd

Vdd
(Vdd − Vt)α

]

=
Vdd

(Vdd − Vt)α+1
(2Vt + (α− 2)Vdd)

Assuming the use of an older technology, where α is close to 2, this simplifies to

−δEstatic
δV dd

∝ VtVdd
(Vdd − Vt)3

(7.9)

At high voltages, V dd� Vt, therefore Equation 7.9 further simplifies to −δEstatic/δVdd ∝

Vt/V
2
dd. Dynamic energy dominates at nominal voltages, as long as switching activity factor

is reasonably high. The slope of dynamic energy is proportional to Vdd (Equation 7.8)

while for static energy it is very shallow because it is threshold voltage (a portion of Vdd)

divided by the square of Vdd. As voltage is scaled to near-threshold, dynamic energy’s slope

becomes increasingly shallower while static energy initially increases its slope. Eventually

static energy’s slope becomes very steep near Vt because of the denominator (Vdd−Vt)3, and

subsequently the total energy rises causing a rapid loss of energy efficiency. When the slopes

are of equal magnitude then total energy is minimized.

Up until now in this chapter we have been considering the energy of a task without

regards to energy required to maintain task latency if it is performance sensitive. Parallelism

overhead of a program can be modeled through Amdahl’s law [41], where the speedup of a

parallelized program is given by

Speedup =
n

1− Ps + Psn
(7.10)

where n is number of cores parallelized over and Ps is the percent serial coefficient of the

workload. A perfectly parallelizable program has a Ps = 0%, while higher percent serials

indicate less of the code is parallelizable, up until Ps = 100% implying the workload is com-

pletely parallelizable. In this work we consider a fixed latency constraint when performance
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sensitive, so that the speedup through parallelism has to balance any performance loss from

longer circuit delay as a consequence of scaling to near-threshold:

Speedup =
Ttask,NTC
Ttask,nominal

(7.11)

For a perfectly parallelizable task, the switching capacitance per core can be equally

divided among the cores:

Cswitch,parallel =
1

n
Cswitch,original

As a concrete example of why capacitance per core for a task is not fixed, consider Eswitch =

αNCV 2
dd where N is the number of clock cycles to execute the task, C is the switching

capacitance of a core, and α is the switching activity factory [31]. Consider that the task is

now parallellized across two cores. Since it is perfectly parallelizable, the number of cycles

to run the task is now N/2 while the amount of cores double so switching capacitance is now

2C. The switching energy for the task is now

Eswitch = α(N/2)(2C)V 2
dd = αNCV 2

dd

Thus, the switching energy per task is constant and per core is now halved, since the task is

running across two cores. In the case of a perfectly parallelizable task, Speedup = n. There-

fore, in this case, the task dynamic energy is constant regardless of amount of parallelism:

Edynamic = nCswitch,parallelV
2
dd

= n
1

n
Cswitch,originalV

2
dd

= Cswitch,originalV
2
dd (7.12)

For a task that does have parallelism overhead, and is not perfectly parallel, the energy

is derated by a factor of (Speedup/n) compared to the perfectly parallelizable baseline. To

arrive at this derating factor, first assume that the switching capacitance can be divided
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among cores as if it was perfectly parallelizable (n = Speedup):

Cswitch,parallel =
1

Speedup
Cswitch,original (7.13)

Next, since the task is not perfectly parallelizable, but has parallelism overheads Ps > 0 and

thus the number of cores is greater than the achieved speedup (n > Speedup), the dynamic

energy is then:

Edynamic,parallel ∝ nCswitch,parallelV
2
dd

=
n

Speedup
Cswitch,originalV

2
dd

=⇒ Edynamic,parallel =
n

Speedup
Edynamic,original (7.14)

By this definition, the ratio of n/Speedup > 1 provides a derating factor on dynamic energy.

Because Amdahl’s law shows an asymptotic speedup with number of cores, the ratio of cores

to speedup is monotonically increasing as cores are added. Therefore, unlike a perfectly

parallelizable workload, dynamic energy increases as voltage is lowered when parallelism

overhead is included.

Leakage energy when parallelizing is similar and, for a performance insensitive workload,

remains unchanged as cores are added. This may seem unintuitive at first, since as the

number of cores increases the total subthreshold leakage also increases proportionally. How-

ever, the task completion time Ttask decreases as cores are added. Therefore, for a perfectly

parallelizable task, the amount of cores added and the reduction in task completion time

cancel out, subsequently Estatic is unchanged. When parallelism overhead is added, static

energy increases as

Estatic,parallel ∝ (nIleak,original)Vdd
Ttask

Speedup

=
n

Speedup
Ileak,originalVddTtask,original

=⇒ Estatic,parallel =
n

Speedup
Estatic,original (7.15)
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Again, an n/Speedup factor can be used to derate leakage energy for tasks that are not

perfectly pralellizable. To summarize, the total energy when parallelizing is

Etotal,parallel = Edynamic,parallel + Estatic,parallel

∝ n

Speedup
Etotal,original (7.16)

which for a perfectly parallelizable workload (Speedup = n) is identical to the performance

insensitive result, otherwise the energy is derated by the ratio of cores to speedup, which

increases as supply voltage drops.

Figure 7.5 demonstrates increasing parallelism overhead increasing the minimum energy

and decreasing voltage scaling’s efficacy. With a perfectly parallelizable program (Ps = 0%),

the minimum energy is 8% of the energy at nominal. A serial coefficient of Ps = 2% raises

minimum energy to 28% of the energy of nominal for this example technology.

Since our analysis minimizes energy subject to a latency constraint, the latency of a

task is fixed when voltage scaling, but the absolute throughput at nominal will change with

varying device characteristics. For example, if threshold voltage is reduced, the fanout-of-4

circuit delay at nominal will improve. In order to evaluate a device characteristic’s impact

on absolute system performance, we use an aggregate throughput metric. In our analysis,

we assume a task repeats as soon as it finishes, thus the throughput is the inverse of task

latency. Furthermore, the power budget of the representative system is fixed so additional

tasks are run until the power constraint is met. If a task consumes 1/X of the fixed power

budget, its throughput is multiplied by X to be the aggregate throughput of the system, and

our goal is to maximize aggregate throughput. Figure 7.5 illustrates aggregate throughput,

normalized to nominal voltage, as compared to total energy.

7.4 Device Characteristics

Transistor devices have a multitude of interrelated characteristics, but we focus on a few

key parameters relevant to FinFET. Using the analytical model from the previous section,

we first examine the effects of three basic device characteristics impacting near-threshold
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Figure 7.5: Total energy of a task increases with a higher serial coefficient (Ps) since
parallelism overheads limit voltage scalability as task latency is fixed. Aggregate
throughput for a fixed power budget is improved as energy per task is reduced.
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performance: drain-induced barrier lowering, subthreshold slope, work function (effectively

threshold voltage). Then, we expand this analysis into five more device or process character-

istics: gate capacitance, source/drain parasitic resistance, within-cell and back-end-of-line

parasitics, FinFET fin height, and lastly planar channel length.

7.4.1 Basic Device Characteristics

Work function

Work function changes the transistor’s threshold voltage Vt, with lower threshold voltages

exhibiting increased leakage. If leakage is a significant portion of the total energy, a lower

threshold voltage negatively impacts voltage scalability since static energy is more significant

and therefore Vopt is higher. However, threshold voltage has a significant impact on clock

frequency scaling through changing transistor ON current, Ttask,NTC ∝ 1/(Vdd − Vt)α. Fig-

ure 7.6, top, shows normalized FO4 circuit delay (i.e. Ttask,NTC) for five transistor threshold

voltages. The 0.6 nA/µm leakage device is the low-standby power device (LSP) presented

in Section 7.2, and exhibits the worst circuit delay voltage scalability. For instance, at

Vdd = 360 mV the FO4 delay of the LSP device is 10× higher than at the nominal voltage of

Vdd = 700 mV. The subsequent higher leakage devices (6, 40, 350, and 2800 mathrmnA/µm)

have lower threshold voltages, therefore can scale lower in supply voltage for the same degra-

dation in FO4 delay.

Better FO4 delay scalability allows a task to operate at a lower voltage and still maintain

adequate performance, as less parallelism is needed for a fixed latency constraint. The

aggregate task throughput within a fixed power budget for the five transistor voltages is

shown in Figure 7.6, bottom. The LSP device has peak throughput at 360 mV, as below

this voltage parallelism overhead becomes significant. The 6 and 40 nA/µm scale lower and

have better throughput within the power constraint, since they are able to operate at a

lower voltage with better FO4 delay degradation. Though the circuit delay scalability of

the 350 and 2800 nA/µm devices are the best, leakage is very significant in these devices

so that throughput decreases, even though Vopt is at very low voltages. The high leakage of

these devices limits the energy efficiency gain for scaling from nominal supply voltages to
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near-threshold, since dynamic energy savings comes at the cost of higher static energy, even

despite the devices being faster at nominal Vdd.

For the 2% serial coefficient workload, the 40 nA/µm device achieved the best throughput,

with an energy gain of 8.7× at a Vopt = 220mV, decidedly better than the 3.6× gain of the

original LSP device. Devices with around 50 nA/µm are colloquially referred to as high-

performance (HP) transistors within the semiconductor industry. Analysis in the subsequent

sections uses the HP device as a baseline in which to compare.

Drain-induced barrier lowering

Drain-induced barrier lowering (DIBL) is a short-channel effect that reduces threshold

voltage as Vds increases. This can be modeled through [69]:

Vt = Vt0 − ηVds = Vt0 − ηVdd

where Vt0 is the threshold voltage with no drain-source potential and η is the DIBL coefficient

(typically around 100 mV/V [69]). As Vdd is lowered, DIBL causes Vt to increase and therefore

the transistor overdrive voltage, Vov = Vdd− Vt, rapidly collapses and severely limits voltage

scalability. This directly affects task completion time Ttask,NTC ∝ 1/(Vdd−Vt)α = 1/V α
ov and

therefore the Speedup needed to maintain a latency constraint. As the DIBL coefficient η

increases, Ttask,NTC degrades, shown in Figure 7.7. DIBL 1 and DIBL 2 are progressively

worse DIBL coefficients from the baseline while each device is tuned to match both Ioff and

the ON current at nominal supply voltage of the baseline device.

For workloads that are sensitive to performance, the poor voltage scalability in clock

frequency translates to limited energy gains and an increasing Vopt as more parallelism is

required (Figure 7.7, bottom). Therefore, an improved DIBL coefficient directly improves

near-threshold energy gains and performance in near-threshold for performance constrained

applications.

For performance insensitive workloads, energy and Vopt do not change significantly, and, in

fact, leakage can be slightly reduced at low voltages because of increased threshold voltages,

Ileak ∝ exp((−Vth0 + ηVdd)/(nVt)).
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Figure 7.7: Circuit delay scaling (top) and aggregate throughput for a fixed TDP
(bottom) as DIBL coefficient increases in 7nm FinFET.
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Subthreshold slope

Subthreshold slope is the change of magnitude of drain-source current for a corresponding

change in threshold, which can be modeled as [69]:

Ileak = Ids0 exp(
−Vt
nVT

)

The denominator nVT sets the subthreshold slope of the device. Subthreshold slope is

typically given in units of mV/dec, and a steeper slope (smaller mV/dec) allows for a smaller

threshold voltage to achieve the same leakage, as less mVs are required to decimate source-

drain leakage currents. Two things happen as subthreshold slope increases (becomes less

steep): (1) for the same threshold voltage, leakage increases; and, (2) the current drivability

of the transistor improves (i.e. the transistor is better able to drive a load at lower voltages).

The increased effective current improves Ttask,NTC scaling with Vdd, as shown in Figure 7.8,

top, with worsening subthreshold slope.

Despite higher leakage with worse subthreshold slope, causing total energy at near-

threshold to increase, circuit delay scaling improves because of better drivability. These

two effects (higher leakage and better drivability) oppose each other for performance sen-

sitive workloads, thus Vopt stays relatively constant (Figure 7.8, bottom). However, for

performance insensitive workloads, improved circuit delay scaling has no impact on energy

and thus increases both Vopt and total energy, limiting achievable energy efficiency gains.

7.4.2 Additional Process Characteristics

The previous process characteristics are the main contributors to improvements of near-

threshold in FinFET. However, additional process effects may impact voltage scalability,

which are presented below.

External resistance and Gate Capacitance

Two significant delay sources in transistors are the parasitic source drain resistance and

gate capacitance. Parasitic source drain resistance, primarily contact resistance (Rcont),

contributes to poorer drivability of a transistor. This decreases FO4 delay of transistors, at
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Figure 7.8: Circuit delay scaling (top) and aggregate throughput for a fixed TDP
(bottom) as subthreshold slope becomes less steep in 7nm FinFET.
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both nominal and near-threshold, but does significantly change the circuit delay scalability of

the device, shown in Figure 7.9 with baseline HP device and two improving Rcont parameters.
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Figure 7.9: Circuit delay scaling (top) and aggregate throughput for a fixed TDP
(bottom) with parasitic source/drain resistance decreasing in 7nm FinFET.

Decreasing gate capacitance Cgg improves circuit delay and decreases dynamic energy

consumption, as less total capacitance is switching every cycle. Figure 7.10 shows the HP

baseline device compared to a device with smaller gate capacitance. The FO4 circuit delay

improves, as is expected from less gate capacitance but similar drivability (i.e. lower C and

constant R). We also observe energy gain improving from 8.6× in the baseline to 9.3× in

the lower gate capacitance device because of slightly better delay scaling.
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Back-End-of-Line and Within-Cell Parasitics

Transistors are interconnected through wires and vias, thus back-end-of-line parasitic ca-

pacitance and resistance needs to be considered when analyzing voltage scaling performance.

Within-cell parasitics are added to the characterization simulations in this study by extract-

ing representative standard cell layouts of a 1X inverter in predictive 7nm, 10nm, and 14nm

FinFET technologies, as provided by ARM. These parasitic models include source, drain

and gate resistance due to trench contacts and local interconnects introduced at sub 20nm

nodes and the corresponding coupling capacitances between input and output pins and the

pins to power-rails. It has been observed that within cell parasitics can contribute up to half

of the total gate delay.

Wire parasitics are modeled in our HSPICE simulations through π-models [70] of pre-

dicted resistance and capacitance per unit length of a low-level metal wire with minimum

width and spacing. The wire length was swept across multiples of minimum track pitch,

from 150 tracks (labeled 150TR) to 1200 tracks (labeled 1200TR), shown in Figure 7.11.

Fanout-of-4 circuit delay was measured, and though the absolute delay increases as within-

cell and wire load is added, energy-efficiency gain is nearly identical across the different

wire lengths. Unlike the prior device characteristics, where aggregate was normalized to a

baseline at 0.7V, the BEOL sweeps are normalized to itself at 0.7V for each wire length, as

longer wire lengths will always be slower than shorter wire lengths.

Since throughput and Vopt are nearly the same across varying wire lengths, BEOL para-

siticts do not significantly impact voltage scaling analysis in 7nm FinFET. In Section 7.5.2

we revisit BEOL across technologies and find that BEOL lowers energy gains slightly for

some technologies.

FinFET fin height

As fins are discretized, transistor width cannot be as accurately selected as with planar.

Therefore, careful selection of fin height is crucial for near-threshold operations. The 7nm

FinFET device was simulated with fin heights of 15nm, 26nm, 30nm, 34nm, 38nm, 42nm,

and 70nm. Our baseline device in the prior sections had a fin height of 42nm as that is

104



0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
1

1 0

1 0 0

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

1

1 0

FO
4 D

ela
y

(N
orm

ali
ze

d)

V d d  ( V )

 N o  B E O L / W i t h i n - D i e
 W i t h i n - C e l l  O n l y
 W i t h i n - C e l l  a n d  1 5 0 T R
 W i t h i n - C e l l  a n d  3 0 0 T R
 W i t h i n - C e l l  a n d  1 2 0 0 T R

F O 4  i n c r e a s e s  w i t h
l o n g e r  w i r e  l e n g t h s
a n d  m o r e  p a r a s i t i c s

N o r m a l i z e d
t h r o u g h p u t  t o  0 . 7 V
f o r  e a c h  B E O L  c o n d i t i o n8 . 6 X  e n e r g y

g a i n .  N o  s i g n i f i c a n t
c h a n g e  w i t h  B E O L .

Ag
gre

gra
te 

Th
rou

gh
pu

t
(N

orm
ali

ze
d t

o 0
.7V

)

V d d  ( V )

 N o  B E O L / W i t h i n - D i e
 W i t h i n - C e l l  O n l y
 W i t h i n - C e l l  a n d  1 5 0 T R
 W i t h i n - C e l l  a n d  3 0 0 T R
 W i t h i n - C e l l  a n d  1 2 0 0 T R

Figure 7.11: Circuit delay scaling (top) and aggregate throughput for a fixed TDP
(bottom) for within-cell parasitics and back-end-of-line parasitics from varying
wire lengths in 7nm FinFET. Throughput is normalized for each BEOL to 0.7V.
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closest to industry projects. Substhreshold leakage was kept constant among all fin heights

by modifying the work function. Because parasitics add a fixed capacitive load which can

change the optimum fin height, we simulated three scenarios: without within-cell or wire

parasitics, within-cell parasitics only, and within-cell plus a 300 track wire. The 300TR wire

was selected as it is close to the average wire length observed for a representative placed-

and-routed ARM processor at sub-28nm technologies. Fanout-of-4 circuit delay and NT

energy-efficiency gain for these sweeps is shown in Figure 7.12.
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Figure 7.12: Circuit delay scaling (top) and energy efficiency gain (bottom) for
varying fin heights and different wire lengths in 7nm FinFET.

Without considering within-cell or BEOL parasitics, decreasing fin height reduces ca-

pacitance and drive strength simultaneously as the physical fin dimensions become smaller.

However, drive strength decreases at a slower rate than gate capacitance, therefore FO4 delay

improves and the fin height for minimizing FO4 delay is 26nm, Figure 7.12, top. However,
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BEOL and within-cell parasitics add a fixed load that remains unchanged with fin height.

When including within-cell parasitics and the 300TR length wire, the 42nm has marginally

improved FO4 delay more than the other fin heights. Of course, this also comes at the cost

of increased dynamic energy since more gate capacitance is switching every cycle.

The optimal near-threshold voltage Vopt was relatively constant between 200 − 220 mV

for all the combinations studied. Subthreshold leakage is the same across all devices, so

larger fin heights have a slightly bigger ratio of dynamic to static energy, and therefore

favor slightly lower voltages as static energy is marginally less significant. However, energy-

efficiency gain deviated with back-end-of-line parasitics, especially at with 26nm fin height.

When unloaded, with no within-cell or wire parasitics, 26nm fin height had a peak energy

gain of 10.1× compared to 8.7× of the baseline 42nm device because of improved circuit

delay scalability. However, when loaded, this effect is diminished, and 26nm fin heights have

a gain between 8.2− 8.8× depending on if wire load is included or not, respectively.

Depending on expected wire loads, a fin height smaller than the 42nm height baseline

(e.g. 26nm fin height) is preferable since fanout-of-4 is faster for smaller wire loads and

dynamic energy is reduced. However, for our analysis we kept with the 42nm fin height

as it was the most representative of expected fin heights in 7nm FinFET. When including

parasitics, a smaller fin height does not greatly change voltage scalability analysis but would

result in less overall energy than the 42nm height we used.

Planar channel length

A common technique to reduce leakage and short-channel effects in planar is to increase

channel length, lg, to be longer than the minimum length supported by the technology, at

the cost of poorer drivability and gate capacitance. We swept channel length from 40 nm to

100 nm when simulating our 40nm planar CMOS models. Fanout-of-4 delay and aggregate

throughput for a fixed TDP across this sweep is plotted in Figure 7.13.

Increasing channel length to lg = 100 nm slows FO4 delay by 3.2×. A slower FO4

penalizes aggregate throughput since tasks run slower at nominal supply voltage. However,

since the clock frequency is slower, more tasks can fit within the same power budget, as

dynamic power P ∝ CV 2
ddf . For channel lengths of 50 and 60 nm the aggregate throughput

107



0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1
1

1 0

1 0 0

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1

1

1 0

 l g  =  4 0 n m
 l g  =  5 0 n m
 l g  =  6 0 n m
 l g  =  1 0 0 n m

FO
4 D

ela
y

(N
orm

ali
ze

d)

V d d  ( V )

I m p r o v e d  F O 4  a t  l o w e r  v o l t a g e s
a n d  l o w e r  l e a k a g e  e n a b l e  g r e a t e r
e n e r g y  g a i n s  t h r o u g h  v o l t a g e  s c a l i n g

l g  =  1 0 0 n m
h a s  1 4 X
g a i n

l g  =  4 0 n m  h a s  7 . 2 X  g a i n

L o n g e r  g a t e  l e n g t h
i m p r o v e s  F O 4  a t  v e r y
l o w  v o l t a g e s ,  l e s s
s h o r t - c h a n n e l  e f f e c t s

3 . 2 X
s l o w e r

L o n g e r  g a t e  l e n g t h
s i g n i f i c a n t l y  i n c r e a s e s
F O 4  d e l a y  a t  n o m i n a l

 l g  =  4 0 n m
 l g  =  5 0 n m
 l g  =  6 0 n m
 l g  =  1 0 0 n m

Ag
gre

gra
te 

Th
rou

gh
pu

t
(N

orm
ali

ze
d)

V d d  ( V )

Figure 7.13: Circuit delay scaling (top) and aggregate throughput for a fixed TDP
(bottom) with varying channel lengths in a 40nm planar technology.
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is roughly the same as with a gate length of 40nm. However, lg = 100 nm can scale to lower

voltages while still improving energy, as leakage and short-channel effects (thus parallelism

overhead) are mitigated. Peak throughput of a lg = 100 nm channel length is 11% higher

than lg = 40 nm channel length, at the cost of 43% slower performance at nominal supply

voltage. Note that the energy gain difference is much higher, 14× for lg = 100 nm versus

7.2× for lg = 40 nm, but the slower fanout-of-4 delay offsets the relative throughput gains

from improved voltage scaling.

7.5 Technology Trends

The previous sections examined the individual device characteristics that impact voltage

scaling and near-threshold energy-efficient operation. In this section we revisit the 7nm

FinFET and expand the analysis to older FinFET and planar technology nodes.

7.5.1 Co-Optimized 7nm FinFET Device

The 7nm FinFET device from Section 7.2 was re-targeted for improved near-threshold

operation by lowering threshold voltage to 40 nA/µm as found in Section 7.4.1. The device

is essentially a low-Vt (LVT) or high performance (HP) transistor flavor. Subthreshold slope,

DIBL, fin height, parasitic source drain resistance, and gate capacitance were targeted to

match predictions for a LVT/HP FinFET device in 7nm. Figure 7.14 shows a comparison

of this device to the original low-standby power (LSP) device from Section 7.2. The NT-

targeted device consumes 60% less energy in near-threshold, because of improved circuit

delay scalability, at the cost of 14% higher energy at nominal supply voltage. Since this

device has a lower threshold voltage than the original, fanout-of-4 delay is improved for both

nominal and near-threshold operation.

The NT-targeted 7nm device, along with two older FinFET technologies (10nm and

14nm), is compared with planar technology nodes (20nm, 28nm, 40nm) below.
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Figure 7.14: Comparison of 7nm FinFET predicted device before and after NTC
optimizations.
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7.5.2 Comparison to Planar

All six technologies provided by ARM were re-targeted for consistency to that of the

HP/LVT (40 nA/µm) device from the prior subsection. We then compared the 7nm Fin-

FET to five older technologies, 10nm and 14nm FinFET, and 20nm, 28nm, and 40nm planar.

By targeting all technologies for the same transistor threshold, better consistency is obtained

compared to [10] which used disparate technology models from different foundries. Addi-

tionally, the analysis in this work extends the 180nm to 32nm analysis in [10] by analyzing

40nm and below.

The energy gain across the six technology nodes is shown in Figure 7.15 both without

additional (within-cell or wire) parasitics and with within-cell and 300TR wire parasitics.

Within-cell extracted parasitics are not included since they were unavailable across all tech-

nology nodes. However, based on findings from Section 7.4.2 the relative voltage scaling

gains should not be impacted greatly from within-cell parasitics. Of the planar nodes, 40nm

has the best energy gain at 6.2−7.2× and this reduces in 28nm and 20nm to 3.5× and 3.3×,

respectively, confirming the trends seen in [10]. Energy gain is diminished in these newer

nodes because of stagnated Vt but lower Vdd (thus a reduction in headroom) and increased

short-channel effects, such as DIBL, causing poor circuit delay scaling.

Transitioning to FinFET in 14nm shows much better energy gains of 9.3−10.7× because

threshold voltage has dropped by approximately 210 mV, with the same leakage character-

istics, and DIBL coefficient has improved from 173 mV/V in 20nm to 31 mV/V in 14nm. In

successive FinFET technologies the energy gain decreases, not because of worse DIBL but

because the nominal voltage is dropping by 50 mV per generation while threshold voltage is

mostly constant (deviating 3 mV per generation). Thus, the dynamic range between nominal

supply voltages and near-threshold is reduced with each generation.

The optimal near-threshold supply voltage to maximize energy gain, Vopt, is shown across

the six technology nodes in Figure 7.16, both with and without BEOL parasitics. The

nominal supply voltage and threshold voltage for each technology is also shown in the figure.

For the 2% serial coefficient studied, Vopt is approximately 40− 80 mV above the threshold
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Figure 7.15: Energy gain and throughput across technology.
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voltage. Workloads with higher serial coefficients would have higher Vopt because of increased

parallelization overheads. BEOL wire loads do not significantly change Vopt.
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Figure 7.16: Vopt across technology.

7.6 Additional Observations

Beyond the initial technology comparison in the last section, we look at additional across

technology effects, including variability and area constraints. These effects add additional

constraints and change the achievable energy-efficiency gain.

113



7.6.1 Variability

Global (die-to-die and wafer-to-wafer) variation and local (across-die or within-die) vari-

ation both impact voltage scaling analysis. In near-threshold, circuit delay is more sensitive

to changes in threshold voltage than at nominal voltage, and thus delay variation is exac-

erbated at near-threshold. This must be accounted for when evaluating near-threshold for

energy efficiency, since operating at a higher voltage may be worse for energy with ideal

transistors, yet more practical as it increases yield due to reduced variation.

Global Variation

Global variation shifts the performance or energy of all transistors on a chip, and is

traditionally evaluated through typical (TT), fast (FF), and slow (SS) fixed corners. The

typical corner models an average transistor in a process, while slow and fast model 3-sigma

extremes in performance. For the six technology nodes in this chapter, we simulated the

FF and SS corners in addition to the typical (TT) corners used in previous sections. Global

variation is correlated, so, for example, a 10% increase in delay of a single inverter equally

increases the delay for a chain of inverters by 10% (assuming rising and falling transitions

are impacted equally).

Binning is a common technique used by processor manufactures to designate different

models of a product based on tested performance. In essence, a slow chip is sold for a

different price than a fast chip, even though the designs are identical. The majority of chip

designs cannot be binned, and instead must meet a minimum performance specification.

Fast transistors correspond with a lower threshold voltage, so leakage is higher at the fast

process corner. When binning is not available, a chip with fast transistors is still run at

the slow clock speeds, thus static energy increases. We evaluated near-threshold for the two

cases, when binning is or is not available.

Binning allows for fast transistors to operate at a different clock speed than slow transis-

tors. In this case, near-threshold operation has a normalizing effect on maximum throughput,

Figure 7.17. Since the FF corner’s threshold voltage is lower than the SS and TT corners, it

allows for a slightly better circuit delay scaling and lower Vopt. In earlier planar nodes, the
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difference in energy gain and Vopt between the fixed corners is more pronounced than in the

FinFET nodes.
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Figure 7.17: Vopt and maximum aggregate throughput across technology nodes
when considering global variation and binning is available. Within-cell and 300TR
wire parasitics included.

When binning is not available, all corners are limited to the clock speeds of the SS corner.

The TT and FF corners have progressively worse maximum aggregate throughput for a fixed

power budget, since TT and FF have higher static energy but do not benefit from faster

clock frequencies, Figure 7.18. This causes Vopt to be higher for the FF corner.

Local Variation

Local variation affects the threshold voltage (random dopant fluctuations) and channel

length (line edge roughness) but, unlike global variation, local variation causes differences

115



7 n m1 0 n m1 4 n m2 0 n m2 8 n m4 0 n m
0

1 0

2 0

3 0

4 0

5 0

6 0

T e c h n o l o g y
Ma

x A
gg

reg
ate

 Th
rou

gh
pu

t 
(N

orm
ali

ze
d)

F i n F E TP l a n a r

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8  T T
 F F
 S S

Vo
pt 

(V)

Figure 7.18: Vopt and maximum aggregate throughput across technology nodes
when considering global variation and binning is not available. Within-cell and
300TR wire parasitics included.
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between transistors within a chip. In digital designs, short paths and clock skew are par-

ticularly sensitive as local variation averages out by the law of large numbers for long logic

paths because its impact is uncorrelated.

Local variation’s effect on fanout-of-4 delay across supply voltage was included by us-

ing conventional Monte Carlo simulations (N = 1000) of statistical transistor models. The

3-sigma (3σ) over mean (µ) delay variation of a single inverter gate, normalized to nominal

supply voltage, is shown in Figure 7.19. At 220 mV in 7nm FinFET the 3σ/µ variation in cir-

cuit delay is 3.3× worse than 3-σ/µ at nominal voltage: for example, if there is 3σ/µ = 10%

variation in FO4 delay at nominal and near-threshold 3σ/µ = 33%. The planar technologies

3σ/µ saturates at a higher voltage, primarily because threshold voltage Vt is higher in these

technology nodes.
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Figure 7.19: Relative increase in circuit delay variation normalized to nominal
voltage in each node.
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We penalize low-voltage operation by derating energy to account for local variation’s

effects on setup and hold time margining. Increased hold time margins at low voltage are

accounted for by approximating that 10% of energy at nominal is used for hold time buffering,

and then increasing this percentage as supply voltage is scaled using the 3σ/µ variation in

Figure 7.19. This coarsely models energy spent on increased hold time buffering, assuming

that clock skew and variation through short circuit paths is proportional to 3σ/µ variation.

In practice, this amount is not directly linear as increased buffers have variations themselves,

so we used a voltage-dependent multiplier of up to 1.1× at near-threshold on top of the energy

percentage to further derate hold time energy.

When including within-cell and 300TR wire BEOL parasitics with hold time margining,

energy gain in 7nm drops from 8.2× to 6.5×, shown in Figure 7.20. Setup time was similarly

included by assuming 10% of clock period is for setup time margin at nominal voltage, and

then increasing this percentage proportional to 3σ/µ delay variation as we did with hold

time margin. The energy gain in 7nm further drops from 6.5× to 6.3×, after including setup

time margin. Thus, hold and setup time margins are substantial enough that they should

be included in voltage scaling analysis. Time borrowing or in-situ correction and detection

[71] could mitigate setup time margins, while improved flip-flops [72] and clock buffering [73]

may improve hold time margins at low voltage, and therefore achieve higher energy efficiency

gains. However, when these margins are included, the 6.3× energy-efficiency gain in 7nm

FinFET is still over double the energy gain of 20nm planar of 2.65×.

7.6.2 Area Analysis

Maintaining a fixed latency constraint in near-threshold requires parallelism across cores

which costs area, yet the impact of area overhead was not evaluated in [10]. In this section

we introduce an area budget while maximizing throughput through voltage scaling, shown

in Figure 7.21. Based on technology scaling predictions from Section 7.1, we fix the area

to that of a single core in 40nm planar to give a range for achievable near-threshold energy

gains with and without an area constraint. As technology scales, transistor density increases

to 2.2, 4.0, 5.8, 9.9, and 19 cores for 28nm, 20nmm, 14nm, 10nm, and 7nm, respectively. The
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Figure 7.20: Energy efficiency gain and optimal near-threshold voltage when in-
cluding hold and setup time margining along with within-cell parasitics and
300TR wire loads.
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effects of BEOL parasitics from a 300TR wire length are also included, while throughput is

normalized to 40nm at nominal voltage.

The dashed lines in Figure 7.21 represent throughput at the area constraint and the

solid lines are throughput at the power constraint. The solid power-constraint lines are as

originally presented in Section 7.3. The dashed area constraint lines start highest on the right

side of the graph (nominal voltage) and rapidly decrease as the maximum clock frequency

of a processor slows as voltage is scaled. When the dashed line for a technology is above

its solid line, the system is area constrained, and vice-versa. Where the two lines cross are

when the design is consuming all available power and area.
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Figure 7.21: Aggregate throughput across technology when power constrained
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The minimum of the solid and dashed lines in Figure 7.21 shows the achievable through-

put when considering both power and area budgets for each technology. For example, 7nm

FinFET has a maximum throughput of 15 at 460 mV, below which the core is area-limited

and above which is power-limited. Without area constraints, a throughput of 49 is obtainable

at 220 mV. Instead of an 8.2× energy efficiency gain, only 2.5× is achievable within the 19

core area budget. The three FinFET technologies have progressively less throughput from

7nm to 14nm when area is constrained, despite similar maximum throughput when area is

unconstrained. The 10nm FinFET node has a maximum throughput of 9.1 at 560 mV and

14nm FinFET has a maximum throughput of 5.5 at 680 mV.

Energy-efficiency gain and NT voltage Vopt is shown in Figure 7.22 for both area con-

strained and unconstrained. Area constraint dominates achievable energy gains, indicating

that near-threshold is more practical for smaller cores that are more power-limited than area-

limited. Planar nodes are extremely limited because of the starting single core constraint in

40nm. In reality, chip multiprocessors commonly have multiple cores, even at 40nm, but the

area constraint provides a conservative bound for evaluating the practically of near-threshold

when area is constrained.

7.7 Conclusions

Near-threshold computing (NTC) has received much interest for overcoming power dis-

sipation limits through improving energy efficiency. However, NTC is observed to be less

effective in recent planar technology nodes [10]. In this work we evaluated the impact of

device characteristics on voltage scaling and showed how to target a FinFET technology

for improved near-threshold operation. FinFET enables significant voltage scaling improve-

ments over planar nodes because of improved channel characteristics, namely less drain-

induced barrier lowering (DIBL) and steeper subthreshold slopes. Additionally, continued

area density improvements generation to generation contribute to the practically of voltage

scaling. A comparison of aggregate throughput of a task at nominal supply voltage and

near-threshold, with and without an area constraint, is shown in Figure 7.23.
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supply voltages across technologies. Within-cell and 300TR wire load parasitics in-
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FinFET allows for more effective near-threshold operation than ever before because it

achieves better voltage scalability and higher area densities. Continued work on circuit

techniques to mitigate variation is needed to maximize energy gains. Performance-sensitive

NT operation requires algorithms to readily parallelize over more cores, requiring further

research on efficient architectures and systems to improve existing algorithms.
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CHAPTER 8

Near-Threshold Computing in FinFET Technologies:

An Architectural Study

8.1 Motivation

In this chapter, we study computational elements of a futuristic system for wide-area mo-

tion imaging (WAMI) to understand how to architect in 7nm FinFET CMOS. The WAMI

system is composed of a large application space, from data-parallel pixel processing to high-

level object detection and decision making, suggesting a heterogeneous architecture of spe-

cialized accelerator units, throughput units, and general-purpose CPUs. We translate the

application space to voltage scaling constraints and objectives, in order to understand how

near-threshold techniques should influence the architectural design. With these definitions

we examine how to maximize throughput in six technology nodes, three FinFET (7nm, 10nm,

14nm) and three planar (20nm, 28nm, 40nm), using transistor models developed by ARM.

Unlike previous near-threshold studies, we also include area constraints in our analysis to

understand what is achievable within a reasonable area budget.

We find FinFET has significant voltage scaling advantages over planar technologies that

allow us to improve energy efficiency, and has a profound impact on architectural design. In

7nm, 2.6−8.9× gains are possible for pixel-level processing elements compared with 1.3−4.9×

in 20nm, depending on area constraints. Single tasks that require the highest performance

possible have traditionally operated at the nominal voltage of a process, given reliability and
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cooling constraints. Increasing single task throughput in recent planar technology (20nm and

28nm) was not possible due to poor circuit delay scaling from short channel effects. We show

that in 7nm, because of FinFET’s improved channel characteristics, up to 20% throughput

increase is possible for single tasks in our WAMI application, with the same power budget.

8.2 WAMI: An Example Application

While near-threshold in FinFET can be applied to a wide range of applications, we choose

wide-angle motion imaging (WAMI) in unmanned aerial vehicles (UAVs) as an example in

this work. Improving the energy efficiency of WAMI allows more processing to be done

on-board the vehicle which decreases communication to satellite or ground stations, thereby

reducing the probability of detection or interception. A WAMI processing pipeline starts

with high-resolution camera images, up to 1.8 Gigapixel, taken every second. These are

analyzed in real-time to identify objects, tracks, events, and threats [74]. A summary of the

different tasks in WAMI are shown in Figure 8.1. The bottom of the pyramid is composed

of tasks that process enormous amounts of data, for example billions of pixels in an image,

but require relatively few computations for each unit processed. Moving up the pyramid

to track, event, and threat levels, data coalesces into fewer and fewer units, though more

computation is required per unit.

Pixel-level processing includes algorithms such as deblurring or debayer, which must

accommodate very high data throughput (1.8Gigapixels/s), so efficiency is crucial at this

level. Fortunately, pixel-level algorithms are highly data parallel, which voltage scaling

accommodates best. Feature extraction is also applied at this level to recognize objects

within the scene, such as a car. Data from the pixel level is provided to the track level to

follow movements of objects through optical flow algorithms, which at the next level are

classified into events, such as a car executing a U-turn. Finally, threat level uses machine

learning algorithms to identify threats from patterns in the event data.

The goal of this work is to understand the efficacy of voltage scaling at each WAMI pyra-

mid level, and use this knowledge to increase energy efficiency when architecting a low-power,

high-performance, embedded system. Pixel-level algorithms require different computational

126



Threats
Hundreds

Events
Thousands

Tracks
Millions-Billions

Pixels
Tril-Quadrillions

Large Compute
per Element

Small Compute
per Element

Climbing Pyramid
Data Coalescing

Figure 8.1: Workload pyramid for our wide-area motion imaging (WAMI) appli-
cation. Low levels (pixels) process lots of data in parallel, while higher levels are single
tasked.

blocks than higher-level algorithms. For example, at the bottom of the pyramid, kernel

algorithms such as deblur can be mapped to specialized hardware accelerators like a Fast-

Fourier Transform (FFT) unit. Midway up the pyramid the algorithms require more control

flow, and subsequently can be mapped to general purpose throughput processors, similar to

general-purpose graphic processing units (GPGPUs). At the top of the pyramid the work-

loads exhibit higher percentages of serial code and significant amounts of branch divergence,

so more conventional multi-processors are desired.

Each of these levels has different performance requirements and parallelism characteris-

tics. Latency of a kernel is less important at the bottom of the pyramid since overall code size

in each kernel is small and, additionally, parallelizes well. General-purpose throughput pro-

cessors also parallelize well, but latency should be maintained for these applications because

of larger code size. Finally, the top of the pyramid is highly serialized and bottled-necked,

so minimizing latency is critical.

WAMI includes many algorithmic kernels, and characterizing their parallelism behavior

is ongoing. For the purposes of this work, we use a methodology similar to Pinckney et
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al. [10] which models workload scaling using Amdahl’s law [41], thus we use three Amdahl

serial coefficients for three levels of the WAMI pyramid. Because the bottom of the pyramid,

pixel-level, is very data parallel we estimate a serial coefficient of 2%, which is similar to

the serial percentage seen in SPLASH-2 scientific benchmarks [10,75]. The workloads above

pixel-level are undergoing development, but are more serialized than pixel level. We picked

a 5% Amdahl serial coefficient to demonstrate track-level. For event-level we show a range

from a pessimistic 25% case to an optimistic 10% case.

Exact serial coefficient values are not critical to understanding our methodology, but were

picked for illustration purposes and values for WAMI workloads may be revised in future

work as the algorithms are better characterized. The same concepts used in this work can

be readily applied to other application spaces if workload behavior is known.

8.3 Circuit Analysis

8.3.1 Methodology

This analysis uses a similar framework to that used by Pinckney et al. [10,11] for estimat-

ing energy and performance when voltage scaling in planar technologies. Circuit simulations

use HSPICE BSIM Level 72 models for 7nm, 10nm, and 14nm FinFET, and Level 54 models

for 20nm, 28nm, and 40nm planar, of which all sets were developed by ARM based on pub-

lished numbers, historical trends, and informed assumptions and calculations. The canonical

circuit simulated to model circuit effects is a chain of thirty-one inverters, which emulates

reasonably deep processor pipelines. Though actual critical paths are composed of more

complex gates, we found inverters are reasonable for comparing performance and energy

between operating voltages and technologies. Within our circuit model, we also included

back-end-of-line (BEOL) parasitics, which are additional capacitors and resistors from wires

that interconnect gates on a chip. Back-end-of-line is important to model as achievable

energy gains when BEOL is included are lower than with ideal wires. Lastly, impact from

across die mismatch variation is accounted for by derating a percentage of the total energy
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and minimum clock period, proportional to increases in variation, to penalize low voltage

operation.

Architectural effects and overheads from scaling our target WAMI algorithms across

multiple cores was modeled using Amdahl’s law [41], with a percent serial coefficient of 2%

for pixel-level workloads, 5% for track-level, and 10%/25% for event-level. These are not

exact values but provide sufficient results to estimate efficacy of voltage scaling. A percent

serial coefficient of 2% is used to describe the voltage scaling scenarios, but we provide a

table of all three sets of serial coefficients at the end of this section.

Final energy and performance estimates were calculated by combining circuit and ar-

chitectural data using MATLAB. The final energy and performance numbers are used to

generate throughput estimates under different voltage scenarios.

8.3.2 Power and Area Scaling

The number of active cores on a die can be limited by power or area constraints. Thermal

design power (TDP) is the allowable power that can be readily cooled by a system, and

has maintained relatively constant generation-to-generation. The area scaling, or transistor

packing density, has been improving allowing more cores within a fixed die area for each new

generation.

Figure 8.2 shows power and area scaling predictions. Power scaling is estimated by

simulating the ARM transistor models, while area scaling is derived from publicly available

foundry data. For this analysis we evaluated core logic only. Caches, with their significantly

lower activity rate, are less power dense. Therefore, within the same power budget, it is

easier to increase the cache size on a microprocessor than add additional cores as technology

scales.

For a TDP that can support a single core in 40nm, 4.7 cores can be powered in 7nm.

While power has improved by a factor of 4.7×, area scaling has improved much faster between

7nm and 40nm. Within a single core’s area in 40nm, approximately 19 cores can fit in 7nm.

This is less than scaling predicted geometrically by squaring the differences in linear feature

size, (40nm/7nm)2 = 33, but still much greater than the 4.7× power scaling. Therefore,
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Figure 8.2: Power and area scaling normalized to 40nm. Area scaling has outpaced
power scaling, leading to a rise in power density.
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technology scaling has allowed for a large increase in cores within a fixed area, but only a

small increase of cores within a fixed power budget. Previously, Dennard scaling [3] allowed

for area and power to track, therefore the ratio between power and area (power density)

remained constant generation-to-generation. However, Figure 8.2 demonstrates that power

density in recent technology nodes is increasing because area density is rising at a faster rate

than power is improving.

This mismatch between power improvements and area improvements has led to the term

dark silicon [5], where we can fit many cores on a chip but not power them. Voltage scaling

exploits this mismatch by increasing the energy efficiency of cores, thereby reducing power,

at the cost of greater area.

8.3.3 Circuit Delay Scaling

Maximum clock frequency of a processor is limited by its critical circuit path, by defini-

tion. Circuit delay for a technology is traditionally measured with fanout-of-4 (FO4) delay,

the delay of a logic gate driving four copies of itself, since it is insensitive to absolute transis-

tor sizing and representative of an optimized circuit path. For this work, fanout-of-4 delay

of inverters was measured in simulation to characterize circuit performance when voltage

scaling, but we observed similar results for other common CMOS gates, such as NANDs and

NORs.

A plot of clock frequency relative to supply voltage (Vdd) is shown in Figure 8.3. Supply

is also normalized to maximum supply voltage of each technology. Clock frequency, as

estimated using inverter FO4 delay, was also normalized to maximum clock frequency of

each technology to show degradation in speed as voltage is lowered. A shallower slope

reflects better circuit delay scaling.

Prior work [10] found NTC tracked 200-400mV above transistor threshold voltage, thus

Figure 8.3 highlights the minimum and maximum of this range across technologies as a

percent of nominal Vdd (43% to 85% of nominal). We denote the clock frequency degradation

at the bottom end of this range (43% of nominal). To the first order, energy savings is

quadratic with supply voltage (CV 2). Therefore, a 57% reduction in Vdd (43% of nominal
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Vdd) very roughly translates to a 82% energy reduction. Less clock frequency degradation

mitigates amount of needed parallelism to maintain performance, and thus reduces overheads

associated with parallelizing, thereby enabling performance-sensitive tasks to operate at a

lower voltage and realize higher energy efficiency gains.

Of the three planar nodes included in this study, 40nm clock frequency scales the best with

voltage (5× slower clock speed at 43% of nominal Vdd). Successive planar generations, 28nm

and 20nm, become progressively worse at voltage scaling (33× slower clock at 43% of nominal

Vdd), because of increased short channel effects and poor subthreshold slope. FinFET has

much better channel characteristics, thus exceeds planar voltage scaling despite possessing

small lithographic feature sizes and good area density. At 43% of nominal Vdd 7nm, 10nm,

and 14nm FinFET’s clock speed is 3× slower than nominal, an order of magnitude higher

than 20nm planar. Therefore, FinFET differs from planar by degrading in performance

the least when voltage scaling, contributing to reduced parallelism to achieve the same

performance. Additional technology factors, such as improved subthreshold device leakage,

also allow FinFET to scale lower than planar technologies.

8.3.4 Voltage Scaling Scenarios

When considering the performance of a near-threshold system, three voltage scaling sce-

narios are evaluated depending on the prioritization of task latency versus overall system

throughput. The three scenarios are summarized in Table 8.1. To simplify analysis, all tasks

running on a system are assumed to be identical when analyzing throughput, though for our

system-level analysis in the next section we partition units based on the task.

The first voltage scaling scenario is when all processors in a system are utilized by a single

task to maximize speedup, and no other tasks are run on the system. Absolute maximum

single task performance is achieved, however because adding additional cores to a task may

only marginally improve performance, the overall energy efficiency is impacted. The second

scenario considers the aggregate throughput of multiple tasks running the system, but the

tasks are performance sensitive, which is accounted for by constraining a task’s latency

to that of the task running on a single core at maximum supply voltage and frequency.

133



Scenario: #1 #2 #3

Maximize
Single-Task

Performance

Maximize
Many-Task

Performance
Goal:

Balance
Single/Many-Task

Performance

Latency: Minimized
Fixed to Latency of
1 Core @ Nominal

Unconstrained

System 
Configuration:

Task

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Task

Task Task Task

Task Task

Core Core Core

Core Core Core

Task

Task

Task

Table 8.1: Voltage scaling scenarios when latency is minimized, fixed, or unconstrained.
Traditional computing is scenario one, while ultra-low voltage is scenario three and recent
near-threshold definitions scenario two.

As supply voltage is lowered and clock frequency degrades, tasks are parallelized across

more cores until the fixed latency constraint is met. This definition was used to define the

near-threshold region by Pinckney et al. [10]. The final scenario again considers aggregate

throughput of many tasks, but each task is assigned to a single core and latency is completely

unconstrained. In this scenario tasks may take very long to finish, but run very efficiently

by minimizing energy consumption.

Each of these voltage scaling scenarios is described in detail within the following subsec-

tions. A percent serial of 2% is used to initially explain each scenario’s behavior, but we

conclude this section by expanding analysis to 5%, 10%, 15%, and 25% serial.

Minimizing Latency

The relative throughput of the single-task scenario is shown in Figure 8.4 while supply

voltage is swept across technologies. To include effects of dark silicon, the starting constraint

is with a power and area budget sufficient to run one core in 40nm, and subsequent tech-

nologies scale as mentioned in Section 8.3.2. Long and short dashed lines indicate maximum

throughput within the power and area budgets, respectively. Solid lines denote throughput

satisfying both area and power constraints. Each color represents a different CMOS tech-

nology, from 40nm to 7nm. The area constraint lines are highest at nominal voltage, and
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rapidly decrease as voltage is lowered since clock frequency degrades. The power constraint

lines feature a peak, representing maximized energy efficiency above which dynamic energy

dominates, and below which leakage energy or parallelization overheads dominate. For 10nm

and 14nm, the short dashed area budget lines bisect the power budget line, indicating best

case efficiency gain when area is considered.
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Figure 8.4: Throughput of single-task scenario (minimizing latency) across six
technologies when power and area are constrained. FinFET scaling and area den-
sity allow for improved single-task performance, which was not possible in older CMOS
technologies.

Area is extremely limited in planar nodes and, in this example, can only support one

core in 40nm, two cores in 28nm and four cores in 20nm. Along with poor circuit delay

scaling, area limits best-case energy efficiency gains in planar nodes. Without constraining
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area, 40nm is able to increase single-task throughput by 37% by operating at 0.7V instead of

1.1V. However, newer planar nodes suffer from poorer circuit delay scalability (degradation in

clock frequency at low voltages), exemplified by 20nm and 28nm having negligible throughput

increase when voltage scaling.

FinFET technologies exhibit better circuit delay scalability, and are much less area-

limited, thus are able to improve single task performance by 30% in 14nm, 40% in 10nm,

and 40% in 7nm, even while constraining area. The power budget allows for 4.5 cores at

nominal voltage (700 mV) in 7nm FinFET, despite having area for 19 cores. Lowering the

voltage in 7nm to 440 mV maximizes throughput by allowing 13 cores to operate within the

power budget. Below 440 mV, throughput reduces because of degrading clock frequency.

Despite low voltage operation’s conventional use only during periods of minimal processor

load, FinFET’s superior circuit delay scalability and the shift to dark silicon, has introduced

a new opportunity for voltage scaling to improve energy efficiency even for high-performance

applications, so long as a task is sufficiently parallelizable.

Fixed Latency Constraint

The second scenario is when aggregate throughput of many tasks is maximized, subject

to latency and power constraints, shown in Figure 8.5 without (top) and with (bottom) area

constraints. Latency is constrained to that of the task running at nominal supply voltage

on a single core. As voltage is lowered the clock frequency degrades, however latency can be

maintained by parallelizing. If parallelism overhead is sufficiently small, energy efficiency can

be improved while maintaining fixed latency for the task. In other words, for energy savings,

the energy overhead needed to parallelize the application across more cores should be less

than the energy gain from running at the lower voltage. Recall that power is proportional to

energy times rate (rate inversely proportional to latency in this example). Because energy

for a task improves, while latency remains constant, additional tasks can be run within the

same power budget.

Without an area constraint, 40nm planar had the best throughput gains across the three

planar nodes, and gains become progressively worse in 28nm and 20nm (4.8× gain in 40nm,

2.8× in 28nm, and 2.7× in 20nm). FinFET exceeds all planar nodes in throughput, with
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gains of 6.8×, 6.7×, and 6.4× for 14nm, 10nm, and 7nm, respectively. Including an area

constraint further limits planar nodes to a maximum gain of 1.3× in 20nm, while FinFET can

achieve 2.5× in 7nm because of increased number of cores that fit within the area budget. A

practical implementation will fall between the area constrained and unconstrained estimates

(2.5 − 6.4× energy efficiency gain in 7nm) depending on the size of the core and room

dedicated to cores versus other peripherals on an SoC.

Unconstrained Latency

The final scenario is when latency is unconstrained and aggregate throughput is max-

imized, shown in Figure 8.6. In this scenario the throughput gains from voltage scaling

without an area budget are much larger than the previous scenario, because tasks always

run on a single core, so that any power savings from running at a lower voltage directly

translates into the ability to run additional tasks on previously inactive cores.

With the area budget of one core in 40nm, all technologies have approximately the same

gains as that of the fixed-latency scenario, since the amount of parallelism is relatively small

in the fixed-latency scenario (no more than a couple of cores per task), thus overheads from

running on multiple cores are negligible. However, without an area constraint the voltage is

pushed lower, achieving gains of 8.9×, 9.6×, and 9.8× in 7nm, 10nm, and 14nm FinFET,

and gains of 4.9×, 5.7×, and 8.3× in 20nm, 28nm, and 40nm planar, respectively. Since

latency is unconstrained, circuit delay scalability with voltage has less of an impact than the

previous scenario, therefore higher throughput gains are achievable.

8.3.5 Sensitivity to Parallelism Overheads

The previous results were for a relatively parallel task (Amdahl percent serial = 2% or

less), equivalent to estimates for pixel-based workloads in WAMI. The event-level and track-

level workloads aggregate more data, and therefore are less parallelizable. This reduces

achievable efficiency gains, as more parallelism is needed for the same speedup at lower

voltage if latency of a task is fixed or minimized. To account for higher serial percentage

we swept percent serial for the three different scenarios and show results for 2%, 5%, 10%,
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Figure 8.5: Throughput of many tasks when latency constrained, without an area
budget (top) and with an area budget (bottom). FinFET is drastically better than
planar for both energy gains and absolute throughput. An area constraint limits achievable
gains, but newer technologies scale better because of higher packing densities.
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Figure 8.6: Throughput of many tasks when task latency is unconstrained, without
an area budget (top) and with an area budget (bottom). When area constrained
results are similar to fixed latency results, since needed parallelism was small. Without an
area constraint higher energy efficiency can be achieved.
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25% in Table 8.2 for 7nm FinFET and 20nm planar. With and without area constraints are

included, to compare achievable efficiency gains for both large and small cores, respectively.

In our scaling example, 20nm only has area budget for four cores and power budget for

2.4 cores at nominal Vdd, versus area for 19 cores and power for 4.7 cores in 7nm. The

relative throughput, number of cores per task, and number of total cores is also included

in the table, to compare performance across scenarios and technologies, and to gauge which

configurations are practical.

Throughput Gain, Maximum Relative Throughput, and Number of Cores

7nm FinFET

Scenario
Single-Task

(Minimize Latency)
Balanced

(Fixed Latency)
Many-Task

(Unconstrained Latency)

Gain T-Put
Cores
/Task

Cores
Total

Gain T-Put
Cores
/Task

Cores
Total

Gain T-Put
Cores
/Task

Cores
Total

% Serial Area Unconstrained
2% 1.4× 14 13 6.4× 69 11 320 8.9× 96 1 1,500
5% 1.2× 11 11 4.9× 53 9.1 210 ” ” ” ”

10% 1.1× 9 8 3.7× 40 5.9 100 ” ” ” ”
25% 1.0× 6 5 2.2× 24 3.0 31 ” ” ” ”

% Serial Area Constrained (19 Cores Max)
2% 1.4× 14 13 2.5× 27 1.6 18 2.5× 27 1 18
5% 1.2× 11 11 2.4× 26 1.6 18 ” ” ” ”

10% 1.1× 9 8 2.3× 25 1.7 18 ” ” ” ”
25% 1.0× 6 5 2.0× 22 2.0 18 ” ” ” ”

20nm Planar

Scenario
Single-Task

(Minimize Latency)
Balanced

(Fixed Latency)
Many-Task

(Unconstrained Latency)

Gain T-Put
Cores
/Task

Cores
Total

Gain T-Put
Cores
/Task

Cores
Total

Gain T-Put
Cores
/Task

Cores
Total

% Serial Area Unconstrained
2% 1.0× 5 3 2.7× 13 14 85 4.9× 23 1 1,700
5% 1.0× 5 3 2.1× 10 7.0 35 ” ” ” ”

10% 1.0× 4 2 1.8× 8 4.2 18 ” ” ” ”
25% 1.0× 4 2 1.3× 6 2.0 5.8 ” ” ” ”

% Serial Area Constrained (4 Cores Max)
2% 1.0× 5 3 1.3× 6 1.3 4 1.3× 6 1 4
5% 1.0× 5 3 1.3× 6 1.3 4 ” ” ” ”

10% 1.0× 4 2 1.2× 6 1.4 4 ” ” ” ”
25% 1.0× 4 2 1.1× 5 1.4 4 ” ” ” ”

Summary of 7nm FinFET vs. 20nm Planar

Scenario
Single-Task

(Minimize Latency)
Balanced

(Fixed Latency)
Many-Task

(Unconstrained Latency)

Gain T-Put
Cores
/Task

Cores
Total

Gain T-Put
Cores
/Task

Cores
Total

Gain T-Put
Cores
/Task

Cores
Total

Average
in 7nm:

1.2× 10 9.3 3.3× 36 4.5 92 5.7× 62 1 760

Average
in 20nm:

1.0× 4.5 2.5 1.6× 8 4.1 20 3.1× 15 1 850

Table 8.2: Summary of throughput (energy efficiency) gains from voltage scaling in 7nm
FinFET and 20nm planar. Relative throughput and number of cores are also listed to
compare across scenario or technology.
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Increasing percent serial decreases the achievable gains, especially for the minimum la-

tency scenario, since serial code can never be sped up through parallelism. In 7nm, a percent

serial of 25% shows no gain in the single-task scenario. Area constrained and unconstrained

is nearly identical in 7nm for a single task, since the number of cores is always less than the

area budget. Because of poor circuit delay scaling in 20nm planar, a single-task can never

be improved through voltage scaling.

Larger percent serial also reduces gains in the fixed-latency scenario when area uncon-

strained. However, this effect is marginalized when area constrained, since in this case the

number of cores parallelized across is relatively small. Varying the percent serial does not

impact the unconstrained latency scenario, as a task always runs on a single core and is

never parallelized.

The relative throughput numbers help compare performance across technology. For in-

stance, when latency unconstrained 7nm has a throughput of 96/8.9 = 11 units at nominal

Vdd, compared to 23/4.9 = 4.7 units in 20nm. Therefore, at nominal Vdd, 7nm has an

11/4.7 = 2.3× increase in throughput compared to 20nm, despite three generations of pro-

cess improvements. Thus, even a 2× gain through voltage is significant compared to gains

from technology improvements. The bottom of Table 8.2 includes a summary comparing

7nm FinFET to 20nm CMOS planar, by averaging across all values for each scenario.

The sensitivity of gain to percent serial, when voltage scaling a single task to minimize

latency, is shown in Figure 8.7. Area was unconstrained as few cores are consumed in this

scenario. A perfectly parallelizable task (0% serial) has a 65% gain in 7nm FinFET, compared

to negligible gain (< 1%) in 20nm planar. Single task gains drop rapidly as percent serial

increases; above 10% serial the gain is < 10%. This is because at nominal Vdd the task is

already parallelized across 4.7 cores in 7nm (the power budget described in prior sections)

and parallelizing across any additional cores leads to very marginal improvements in latency.

Our predicted transistor models show a small improvement in FO4 delay from 20nm to

7nm, translating to a clock frequency decrease of only roughly 5%. Therefore, improvements

in single task performance must come from architectural or circuit techniques, such as voltage

scaling, and not from generational process improvements. Also included in Figure 8.7 is the

optimal Vdd when voltage scaling a single task to minimize latency. Nominal voltage in
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Figure 8.7: Throughput gain and optimal operating voltage of a single task (mini-
mize latency) in 7nm FinFET and 20nm Planar as percent serial is swept. Nominal
voltage is optimal above 33% serial.

142



20nm is 900 mV and in 7nm is 700 mV. At 0% serial, the optimal voltage is 400mV in 7nm

and increases with higher percent serial until reaching nominal voltage at 33% serial. This

suggests that fine-grained voltage and frequency adjustment is useful to optimize single task

performance.

We used the above numbers as a guide for how to design the WAMI architecture, in

order to understand how to best apply voltage scaling to system components and quantify

achievable efficiency gains. Our system is composed of a mix of the above scaling scenarios,

and how much area to dedicate to each core type is a free variable in our analysis, therefore

no one scenario embodies the entire WAMI system. FinFET is well within the predicted dark

silicon regime, where power density has increased to the point of limiting the majority of cores

from operating simultaneously at full voltage and frequency. However, FinFET also offers

substantial flexibility in architecture design than planar could not offer. Because of FinFET’s

improved circuit delay scaling and higher area density, designers may realize energy efficient

heavily parallelized systems that work over a wide range of workloads. Traditionally, high

single-task performance has been accomplished by running cores at maximum frequency and

Vdd, yet in FinFET even single-task performance can be improved through voltage scaling.

8.4 System Analysis

8.4.1 Compute Units

The architecture we envision to handle the WAMI class of workloads is heterogeneous and

targets the differing amounts and styles of parallelism that WAMI exhibits. For this study

we examined WAMI, though the approach can be generally applied to any high performance

system by understanding the computational requirements, goals, and ease of parallelism.

Frames of an image in WAMI are assigned to small, independent compute units, Figure 8.8,

consisting of specialized accelerators (e.g. FFTs), throughput accelerators units (e.g. GPG-

PUs) and general-purpose processors (CPUs), to handle different algorithm kernels from

pixel-level to event-level in the WAMI pyramid. Threat-level machine learning detection is

still done outside of the system. We envision a complete system will include many clusters
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of compute units, with interconnects and shared memory (both off-chip DRAM and on-chip

L2 cache), in a 3D stack such as proposed by Fick et al. [14]. However, in this chapter

we focus on the achievable maximum energy efficiency (GFLOPS/W) of a compute unit, as

interconnect and cache will directly contribute to power requirements and not computation,

thereby decreasing the final GFLOPS/W.

TAU

Interconnect to Shared Memory

+ Additional Compute Units

CPU FFT

Compute Unit (Processes Frame)

Pixel-Level

Parallel

Kernels

Event-Level

Serial

Kernels

Figure 8.8: Proposed high-performance compute unit to handle heterogeneous
WAMI workloads.

Specialized Accelerators (FFT)

WAMI pixel-level workloads include a deblurring algorithm which can be mapped to a

dedicated Fast Fourier Transform (FFT) accelerator. While FFT accelerators have limited

applications, and cannot be applied to event- or track-level processing, deblurring processes

all pixels for each frame of an image, thus is large enough to justify a dedicated hardware unit.

For our analysis we use the Jeon et al. design of a 16-bit 1024-point FFT accelerator with a

low-power first-in first-out (FIFO) pipeline [76]. The accelerator specifically includes energy

saving techniques, such as super pipelining, to improve low voltage operation. Published
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results for their FFT accelerator are from a 65nm CMOS process, which we scale to 40nm

CMOS for this work.

Throughput Accelerator Unit (TAU)

An important ingredient of our ongoing effort to achieve high power/performance for

WAMI workloads is a programmable “throughput processor” that handles data in 32-wide

integer words or 16-wide floating point words. We include this in our scaling analysis as an

example unit to demonstrate how these type of workloads scale, but the energy efficiency

gain results could be applied to similar vector processors.

The throughout accelerator unit (TAU) is a straightforward SIMD processor with 32/16

lanes. Each lane is a simple in-order pipeline with its own 32-entry register file. The ISA

conforms to the ARM v8 definition, which makes it compatible with a wide range of program-

ming models, and therefore leverages the entire ARM ecosystem. Simulations of the TAU

unit, beyond this chapter’s scope, show a maximum improvement 25× in peak GFLOPS/W

over a complex out-of-order ARM Cortex-A57 core in the same technology for pixel-level

WAMI kernels.

General-Purpose Processor

WAMI pixel-level workloads are highly parallel, but event- and track-level become in-

creasingly serial and require more flow control. Therefore, our compute unit also includes a

conventional general-purpose processor. For our example scaling, we estimated the power and

performance of an in-order, dual-issue ARM Cortex-A53 processor, as we found event- and

track-level WAMI kernels did not significantly benefit from out-of-order processors. Again,

as with the previous units, these are shown for illustration purposes, and the general voltage

scaling principles and methodologies could be applied to other processors and workloads.
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8.4.2 Results

Mapping Voltage Scaling Scenarios

We map each level of WAMI to processor units, voltage scaling scenarios, and ease of

parallelism, Table 8.3. For instance, at the bottom of the WAMI pyramid, pixel-level requires

an FFT accelerator (for deblur algorithm), TAU accelerator (de-bayer algorithm, short-term

change detection, and noise removal), and CPU (geographic registration). Through analysis

of the kernel algorithms, we found that they are largely data parallel, with tight spatial

locality, and thus parallelize well with a Amdahl serial coefficient of roughly 2%. As WAMI

is intended for real-time analysis, latency for pixel-level algorithms is important, but is not

absolutely critical to minimize as code size is small. Also included in pixel level is ‘geographic

registration,’ which periodically aligns the image with GPS coordinates, requiring a general-

purpose core. Geographic registration is not processed per frame, so quick latency is not

important and the unconstrained latency scaling scenario applies to this algorithm.

For event- and track-level workloads, ongoing work is to characterize these WAMI kernels

and refine estimates for how well they parallelize, thus the estimated percent serial may

change after the kernels are fully understood. For event-level we show a range from 10% to

25% serial as parallization scaling for these kernels is not well understood.

Pre-Scaling Assumptions

For illustrating voltage scaling in the futuristic 7nm FinFET process, we begin by esti-

mating the area, power, and performance of each compute unit component in 40nm when

running at nominal supply voltage, shown in Table 8.4. These values were estimated through

published data for a 65nm FFT [76] scaled to 40nm, publicly available specifications for an

ARM Cortex-A53 CPUs, and internal predictions based on gate-level synthesis results of our

throughput accelerator unit.

Efficiencies of the CPU and throughput accelerator are limited to 2.2 and 5.2 GFLOPS/W,

respectively. However, the efficiency of our FFT is orders of magnitude higher than the CPU

and TAU, because FFT hardware accelerators feature much higher efficiency than software

FFTs running on conventional processors. Of course FFT accelerators have the disadvantage
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Unit
Percent
Serial

Goal

Event-Level Workload
CPU

Pessimistic
25%

Maximize Single-Task
(Minimize Latency)

CPU
Optimistic

10%
Maximize Single-Task
(Minimize Latency)

Track-Level Workload

CPU 5%
Maximize Single-Task
(Minimize Latency)

Pixel-Level Workload

CPU 2%
Maximize Many-Task

(Unconstrained Latency)

TAU 2%
Balanced

(Fixed Latency)

FFT 2%
Balanced

(Fixed Latency)

Table 8.3: WAMI workload mapping to voltage scaling scenarios.

of being limited to running a single algorithm. Other applications may require a different set

of processing units, with different efficiencies and area requirements, but the relative scaling

from 40nm to our futuristic 7nm technology will be similar.

Block
Area

(mm2)
Efficiency

(GFLOPS/W)
Power
(mW)

CPU 2.2 2.2 330
TAU 12 5.2 1, 200
FFT 3.3 170 7, 300

Table 8.4: Pre-scale estimates of compute unit components running in 40nm at nominal
voltage.

7nm Nominal Voltage Estimates

The compute components were scaled from 40nm planar VDD to 7nm FinFET, both

targeting nominal operating voltage (1.1V in 40nm to 0.7V in 7nm), based on our technology

scaling predictions from Section 8.3.2. Estimates are shown in Table 8.5. Area and power of

each block decreased by 19× and 4.7×, respectively, while efficiency increased by 6.4×.
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Block
Area

(mm2)
Efficiency

(GFLOPS/W)
Power
(mW)

CPU 0.11 14 71
TAU 0.62 33 258
FFT 0.17 1, 100 1, 570

Table 8.5: Components of compute unit in futuristic 7nm FinFET technology at nominal
operating voltage.

7nm Voltage Scaling Estimates

The final area, efficiency, and power of computer unit components after voltage scaling to

near-threshold in 7nm FinFET is shown in Table 8.6. Voltage scaling improvements are from

Table 8.2. Area of blocks increased from nominal operating voltage because we assume blocks

were replicated so that they match the power draw of nominal voltage operation, but with

much higher energy efficiency and thus higher throughput (GFLOPS). In essence, voltage

scaling allows us to achieve higher throughput with the same power budget by increasing

area and lowering voltage.

The FFT and TAU units are able to achieve between 2.5 − 6.5× efficiency gain, by

operating between 460 mV to 240 mV, depending on the area limitations of the final system.

Similarly, the pixel-level CPU is able to achieve 2.5 − 8.9× gains at 460 mV to 180 mV

because it does not have a strict latency requirement. Event- and track-level require latency

to be minimized, and so gain up to 20% for track-level (at 480 mV) and up to 10% (at

540 mV) for event-level.

8.5 Related Work

The problem of increasing power density has been referred to as dark silicon by Es-

maeilzadeh et al. [5], since in this regime it is not possible to run all cores on a processor

simultaneously at maximum frequency and voltage. Taylor [15] further looks into issues of

dark silicon as it impacts architecture, and discusses four solutions, including heterogeneous

architectures and voltage scaling.
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Block Area Efficiency Power
(mm2) (GFLOPS/W) (mW)

Event-Level Workload
CPU

Pessimistic
0.11 14 71

CPU
Optimistic

0.91 15 71

Track-Level Workload
CPU 11 17 71
Pixel-Level Workload
CPU 2.1− 170 35− 125 71
TAU 11− 200 83− 212 258
FFT 3.1− 55 2, 707− 6, 931 1, 570

Table 8.6: 7nm estimates after voltage scaling and increasing number of units until power
matches nominal Vdd.

Leveraging voltage scaling to regain energy is not new, and traditional dynamic voltage

and frequency scaling (DVFS) is used extensively in processors. Early low-power subthresh-

old architectures were presented by Chandrakasan et al. [36] and Wang et al. [31]. More

recent low-voltage work [6,12,48,50] shifts to using voltage scaling (near-threshold or NT) for

overcoming dark silicon. A key distinction to prior work is that near-threshold is proposed

under normal processor load, not just during periods of idleness. Multicore architectures,

used to parallize workloads, were also included as parts of these works. Azizi et al. [77]

shows that voltage scaling is an effective technique for trading off performance and power,

and that a large energy-performance design space can be encompassed using a small core,

large core, and voltage scaling. Pinckney et al. [10, 11] provided a methodical definition

of near-threshold by defining it as the point where energy is minimized subject to a fixed

latency constraint, and examined it across six planar technology nodes (180nm to 32nm).

Circuit challenges and solutions in near-threshold were examined by Kaul et al. [23].

Most recently there has been increased interest in wide-voltage scaling circuits, that are

meant to scale gracefully from low to high supply voltages. Intel has published a wide-voltage

scaling processor [16], network-on-chip [17], and register file [8]. From academia, Centip3De

[14] is a proposed 3D processor that can dynamically reconfigure between many low-Vdd

processors or few high-Vdd processors, depending on workload requirements.
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This work differs from prior work primarily by examining differences between FinFET

and planar. Compared to prior NT studies, such as [10], we analyze across technologies

using a set of models that have been consistently tuned with similar transistor threshold

voltage types. We also combine the impact of wire loading, and mismatch variation, directly

into the energy optimization, both of which are especially significant in recent technologies.

Finally, this work proposes three definitions for voltage scaling scenarios, and includes area

constraints, which [10] does not address.

8.6 Conclusions

Power and performance improvements in process technology has slowed and systems

now, more than ever, need to be co-designed with circuit techniques, such as voltage scaling.

We analyzed voltage scaling as it applies to a variety of workloads, by study a wide-area

motion imaging (WAMI) application. Three specific voltage scaling scenarios are examined:

(1) single-task throughput where latency is minimized; (2) many-task throughput where

latency is fixed to that of nominal supply voltage; and (3) many-task throughput when

latency is completely unconstrained. For each of these scenarios, we estimated efficiency

gains with differing amounts of parallelism and area budgets. We then provided sample

specifications of processing units for a WAMI system and show how they scale to near-

threshold in 7nm FinFET. By leveraging voltage scaling we are able to achieve significantly

higher throughput numbers, especially for easily parallelized kernels of the WAMI workloads.

However, voltage scaling of mid-level single-task workloads also achieve gains, which was

previously not possible in recent planar technologies.

We show that FinFET offers important advantages over planar CMOS technologies,

namely less degradation in circuit performance at low voltages, which translates into sizable

energy efficiency gains (Figure 8.9). Combined with the ability to pack more cores within the

same die area, FinFET offers architects unique opportunities to design futuristic system that

leverage voltage scaling for achieving high-performance, even when latency minimization is

critical.
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It is important to note that many additional factors would impact the efficiency and

performance of a complete system, namely interconnects, caches, memory interfaces, and

peripherals. Memory and interconnects voltage scale differently than core logic, since they

are generally dominated by wire loads and leakage power. Of course, they will also impact

the scalability of tasks and further co-optimization is needed. Our estimates show very high

GFLOPS/W are possible at the pixel-level, for instance exceeding a 75 GFLOPS/W target

for WAMI systems set by the DARPA-funded ‘PERFECT’ project, though further work is

needed on system-level components to demonstrate this target is realizable. Nevertheless,

understanding voltage scaling benefits and limitations is essential in designing futuristic

architectures in our post-Dennard scaling world with FinFET.
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Figure 8.9: Summary of energy efficiency gains of WAMI kernels in futuristic 7nm
FinFET compared to 20nm planar.
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CHAPTER 9

Summary and Future Work

Supply voltage scaling has stagnated in recent technology nodes, leading to so-called

dark silicon and increasing interest in near-threshold computing. This dissertation carefully

examines near-threshold’s past, present, and future, at device, circuits, and architectural

levels.

9.1 Contributions

First, in chapters 2 and 3 we defined near-threshold computing, observing tradeoffs and

trends across previous planar technology nodes (180nm to 32nm). Specifically, near-threshold

is defined as the minimum energy point of a workload when accounting for parallelism

overheads (algorithmic and architectural) to maintain a fixed latency of the workload running

on a single core at nominal voltage. By constraining latency voltage scaling is evaluated for

performance sensitive workloads, to better understand how close to threshold is practical for

many workloads and then using this definition to examine trends across technology nodes.

This iso-latency analysis is workload-dependent and parallelization overheads, arising from

algorithmic and architectural sources, are assessed through system-level simulations of the

SPLASH-2 benchmark suite [75]. A key finding is that, across the scientific benchmarks

studied, the near-threshold region tracked roughly 200 − 400 mV above threshold voltage.

Across the SPLASH-2 benchmarks in 32nm, parallelism across 12 cores is needed on average.
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Additionally, NT energy gain was decreasing from 8× in 180nm to 4× in 32nm, and therefore

is becoming less effective as planar technologies reach end of life.

Chapters 4 and 5 continued with comparing fast voltage boosting techniques with het-

erogeneous cores, and proposed a fast voltage boosting architecture. The technique, called

Shortstop, uses three external supplies to quickly raise the voltage of a core, within 10’s

of nanoseconds, without inducing supply droop. This is achieved by leveraging parasitic

inductance of a package similar to a boost converter arrangement. The 28nm wirebonded

demonstration chip was able to raise the voltage of a core 1.7× than PMOS headers and

with 3.5− 6× less droop. Proposed modifications to Shortstop for flip-chip architectures is

given in Chapter 6.

Finally, chapters 7 and 8 looked towards the future near-threshold, specifically evaluating

the performance of near-threshold in recent and upcoming FinFET technologies. Chapter 7

examined effects of device characteristics on near-threshold and found that FinFET’s su-

perior channel characteristics, namely DIBL and subthreshold slope, contribute to much

improved voltage scalability and near-threshold energy efficiency gain. Chapter 8 expanded

analysis to consider three voltage scaling scenarios: minimizing lantecy, fixed latency, and un-

constrained. A predicted 7nm FinFET technology has an energy efficiency gain of 2.6−8.9×,

depending on area and latency constraints, a marked improvement from recent planar tech-

nology. Efficiency improvements of up to 20% are possible for tasks in which latency is

minimized.

9.2 Future Work

Near-threshold holds promise for improving energy efficiency of modern processors as pro-

cess scaling continues to slow. Increased transistor packing densities will enable advanced

voltage scaling techniques. Initial near-threshold designs have shown promise, yet many

obstacles remain before NTC can be widely adopted. Variability remains one of the biggest

challenges for low-voltage operation but variation tolerant techniques, such as soft clocking

and in-situ monitoring, can help mitigate these issues. Improved topologies for blocks that

traditionally scale very poorly because of sensitivity to mismatch, such as SRAMs, demon-
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strate that low-voltage operation is possible even under extreme variation [78–80]. Circuit

techniques will aid in realizing efficient, voltage scalable systems, yet radical new CAD tools

and methodologies must also be developed to alleviate needs on designers for quickly and

practically implementing voltage scalable systems.

The near-threshold studies presented in chapters 2, 3, 7, and 8 are based on high-level

models of voltage scaling, deriving near-threshold energy and performance from transistor

models and architectural simulations. However, processors do not always port directly to

newer technologies and are constrained by complex critical paths composed of both logic and

wire delays. Additionally, circuit structures other than core logic paths (with high activity

factors) may scale differently than the paths modeled in the above chapters. For instance,

SRAM caches are composed of large array of bitcells with low activity factors, which favor

high-threshold transistors because leakage is more dominant than in core logic. Thus, design

and implementation of fully-realized architectures and systems utilizing voltage scaling may

reveal caveats and limitations not exposed in this work.

Designs and proof-of-concepts of the Shortstop fast supply boosting technique were pre-

sented in chapters 5 and 6 but the studies have a few limitations. Neither wirebond nor

flip-chip designs include a fully functioning processor, instead core modeling was limited to

emulation of a processor through virtual rail capacitive and current loading. Also, integra-

tion of caches with multiple switched power domains was not explored, and may require level

shifters and synchronizers costing power and area.

Another key problem with Shortstop is the need to accurately actuate all power switches,

with little skew, to avoid causing short-circuit currents between power supplies. The enable

signal for distributed on-chip power switches are conventionally daisy chained to reduce

metallization utilization. However, daisy-chaining requires significantly more time to activate

than if a buffered high-fanout network were used. In practice, this may also be a benefit as

to not overtax the power supply network. Because Shortstop requires accurate actuation of

PMOS and NMOS power switches, a low-skew clock-like network is needed for the switch

enable networks, thereby requiring always-on buffering and higher metallization usage over

core voltage areas. Centralizing power switches eases design and overhead of the switch

enable network, but may degrade the power distribution network as centralized switches
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may have higher IR drop and worse mutual inductance. Therefore, further work is needed

to understand how to efficiently balance header and footer positioning between the two

extremes of completely centralized and completely distributed power switches.

9.3 Related Publications

• Chapter 2: N. Pinckney, K. Sewell, R.G. Dreslinski, D. Fick, T. Mudge, D. Sylvester,

and D. Blaauw. Assessing the performance limits of parallelized near-threshold com-

puting. In Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE,

pages 1143-1148, June 2012.

• Chapter 3: N. Pinckney, R.G. Dreslinski, K. Sewell, D. Fick, T. Mudge, D. Sylvester,

and D. Blaauw. Limits of parallelism and boosting in dim silicon. Micro, IEEE,

33(5):30-37, Sept 2013.

• Chapter 4 is unpublished, but based off of a University of Michigan EECS 570 report

from N. Pinckney and E. Lu.

• Chapter 5: N. Pinckney, M. Fojtik, B. Giridhar, D. Sylvester, and D. Blaauw. Short-

stop: An on-chip fast supply boosting technique. In VLSI Circuits (VLSIC), 2013

Symposium on, pages C290-C291, June 2013.

• Chapter 6 is unpublished, but submission is planned once chip testing is complete.

• Chapter 7: N. Pinckney, L. Shifren, B. Cline, S. Sinha, S. Jeloka, R. Dreslinski, T.

Mudge, D. Sylvester, and D. Blaauw. Near-Threshold in FinFET Technologies: Impact

of Process on Voltage Scalability. Pending submission.

• Chapter 8: N. Pinckney, L. Shifren, B. Cline, S. Sinha, S. Jeloka, R. Higgins, G.

Ray, J. Ballast, W. Snapp, C. Chakrabarti, T. Mudge, D. Sylvester, D. Blaauw, and

R. Dreslinski. Near-Threshold Computing in FinFET Technologies: An Architectural

Study. Submitted for publication.
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• Sections of this thesis are also based on N. Pinckney, D. Blaauw, and D. Sylvester. Low-

Power Near-Threshold Design: Techniques to Improve Energy Efficiency. In Solid-State

Circuits Magazine, IEEE, 7(2):49-57, Spring 2015.
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