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Abstract—This work revisits the design of crossbar and
high-radix interconnects in light of advances in circuit and layout
techniques that improve crossbar scalability, obviating the need
for deep multi-stage networks. We employ a new building block,
the Swizzle-Switch—an energy- and area-efficient switching ele-
ment that can readily scale to radix 64—that has recently been
validated via silicon test chips in 45 nm technology. We evaluate the
Swizzle-Switch as both the high-radix building block of a Flattened
Butterfly and as a single-stage interconnect, the Swizzle-Switch
Network. In the process we address the architectural and layout
challenges associated with centralized crossbar systems. Com-
pared to a conventional Mesh, the Flattened Butterfly provides
a 15% performance improvement with a 2.5X reduction in the
standard deviation of on-chip access times. The Swizzle-Switch
Network achieves further gains, providing a 21% improvement in
performance, a 3 X reduction in on-chip access variability, a 33%
reduction in interconnect power, and a 25% reduction in total
system energy while only increasing chip area by 7%. Finally,
this paper details a 3-D integrated version of the Swizzle-Switch
Network, showing up to a 30% gain in performance over the 2-D
Swizzle-Switch Network for benchmarks sensitive to interconnect
latency. One major concern with 3-D designs is thermal dissipa-
tion. We show through detailed thermal analysis that with the
highly energy-efficient Swizzle-Switch Network design that the
thermal budget is well within that of passive cooling solutions.

Index Terms—Crossbars, manycore systems, multicore pro-
cessing, network-on-chip, network topology, on-chip intercon-
nects, parallel architectures.

I. INTRODUCTION

HE EMERGENCE of many-core designs has led to a re-
newed interest in interconnect techniques because intra-
chip communication bottlenecks can compromise performance.
Although most commercial multi-core designs have used bus-
based communication [3], [24], wire delay and bus contention
have hindered the scalability of buses past 816 cores [12]. As
such, it is clear that bus-based interconnects are not suitable for
many-core systems.
Network-on-chip (NoC) designs have been advocated as an
alternative to bus-based architectures. NoC systems, such as the
Tilera Tile64 [49], utilize a distributed multi-stage interconnect
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design to avoid the scaling issues of long wires. However, this
improved scalability comes at the expense of high variability in
memory access latencies as well as increased design complexity
to guarantee correctness and fairness (e.g., avoiding deadlock,
livelock, starvation, etc.).

Crossbar-based architectures, like those in the Niagara2 [26]
and IBM BlueGene/Q [21], can provide the uniform memory
access latency that is unachievable in multi-stage NoC sys-
tems. Additionally, crossbar systems can potentially provide
higher bisection bandwidth and lower complexity solutions for
quality-of-service guarantees than NoC designs. Despite these
advantages, large crossbars are generally considered infeasible
because the area and power of traditional matrix-style crossbars
grow quadratically with crossbar radix.

In this paper, we revisit the design of crossbar and high-radix
interconnects in light of advances in circuit techniques that sig-
nificantly improve crossbar scalability. Recent work has demon-
strated a new circuit-level building block, the Swizzle-Switch, an
energy- and area-efficient switching element that improves the
scalability of crossbars to a higher radix. In addition it provides
multicast capability and least-recently-granted priority arbitra-
tion. Multicasting is the ability for any input to be connected to
multiple outputs which simplifies invalidation message delivery
in directory protocols. This multicast ability within a permuta-
tion network is known as swizzling in the graphics community,
from which our design derives its name. The Swizzle-Switch has
recently been validated with a silicon test chip in 45 nm tech-
nology [43]. For purposes of the analysis in this paper we scale
and evaluate the design in 32 nm.

We consider two ways in which Swizzle-Switches can be de-
ployed in many-core systems: 1) as a high-radix crossbar within
the routers of a conventional multi-hop NoC, and 2) as a cen-
tral switch for a flat crossbar design. Specifically, we evaluate a
Swizzle-Switch-based, 64-core Flattened Butterfly [29] system
and the Swizzle-Switch Network (SSN), a system comprising
64 cores and 32 L2 banks connected through central crossbars.
We solve key architectural and layout challenges in both de-
signs. In particular, we develop detailed floorplans for each in
32 nm technology, with SPICE analysis, and contrast both the
Swizzle-Switch-enhanced flattened butterfly and SSN with the
Mesh design.

Our detailed results show that the Swizzle-Switch-based Flat-
tened Butterfly improves performance by 15% over the Mesh
while achieving a 2.5x reduction in the standard deviation of
on-chip access times. The SSN attains even higher performance,
providing an average of 21% performance improvement, a 33%
reduction in interconnect power and a 25% reduction in total
system energy over the Mesh with only a 7% area overhead

2156-3357/$31.00 © 2012 IEEE
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Fig. 1. QoS in network-on-chip. Figures (a) and (b): All nodes generate traffic directed to a hotspot located at (8, 8) with injection rate of 0.05 flit/cycle/node,
and the bar graphs show the accepted service rate per source node for (a) 8 X 8 mesh and (b) 64-radix SSN. Figures (c¢) and (d) demonstrate the same effect for
uniform random traffic at injection rate of 1 flit/cycle/node. Unfairness metric derived from [13].

with no global wiring congestion. In addition, the more uniform
transfer latency of the flat SSN reduces the standard deviation
of on-chip access latencies by 3x with respect to the Mesh.

Finally, the design of the Swizzle-Switch Network is investi-
gated in a 3-D integrated design. With the use of through-sil-
icon-via (TSV) technology a 3-D-SSN design approach is ex-
plored. In the 3-D-SSN the Swizzle-Switch is folded across sev-
eral layers, reducing the area and capacitance of the Swizzle-
Switch. This reduced capacitance leads to a increased Swizzle-
Switch speed. By reducing the number of elements on each
layer, the interconnect to and from the Swizzle-Switch is also
improved. Overall, the interconnect speed is increased by 1.8 %
in a four-layer system. This increased interconnect performance
results in up to a 30% increase in performance for benchmarks
that are sensitive to interconnect latency. Additionally, thermal
analysis shows that the 3-D-SSN can be cooled using passive
cooling solutions.

The rest of the paper is organized as follows. Section III
presents the details for our high-radix self-arbitrating crossbar
element, the Swizzle-Switch. In Section IV, we present the
Swizzle-Switch Network and contrast it with two NoC topolo-
gies: the Mesh and Flattened Butterfly. Section V provides
details of our evaluation methodology. We present results in
Section VI. Section VII details on potential 3-D implementation
of the SSN and presents performance results. Section VIII pro-
vides background information on interconnection techniques.
Finally, we conclude in Section IX.

II. MOTIVATION

The continued shift toward many-core systems in the
architecture community has led to renewed research in inter-
connects, particularly for on-chip communication. To provide
better bandwidth, early multi-core systems transitioned from
bus-based interconnect fabrics to crossbars [2], [26], [52].
However, the increased power consumption and die area from
high-radix crossbars has led researchers to explore alternatives
to flat crossbar topologies [51]. In systems whose core counts
approach 64-128, several studies have noted that creating a
crossbar to interconnect all cores would cause the interconnect’s
power and area to dominate the system [32]. Consequently,
there has been a paradigm shift towards packet-switched,
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Fig. 2. Comparison of interconnect power for the SSN and mesh.

on-chip networks with regular topologies such as meshes [22],
[49] and rings [19], [45].

This shift from a flat interconnect model to nonuniform,
multi-hop interconnects has come at the cost of nonuniform
cache access (NUCA) latencies [27]. The ability to provide
uniform latency makes using a crossbar an appealing option
because predictable latencies remove the need for complex
techniques for routing algorithms [39], quality-of-service [18],
congestion management [33], data placement [35], and thread
scheduling [23].

Fig. 1 shows the high variability of multi-hop, on-chip
networks compared to the single-hop Swizzle-Switch Network
(SSN) detailed in Section I'V. In this example, both networks are
assumed to be run at the same frequency. The Mesh network’s
accepted throughput at any given node is highly dependent
upon the location of the destination node. Under worst-case
hotspot traffic, nodes closest to destination (nodes g) receive
the highest throughput, while nodes closest to the center
(e.g., nodey 4) receive the highest throughput when traffic
is uniformly distributed. In contrast, the SSN distributes its
throughput evenly amongst its nodes allowing for it to see a
40x and 87% fairness improvement for hotspot and uniform
random traffic, respectively. There are many research papers
that address fairness issues in NoCs. However, these solutions
can involve complex mechanisms [18], [33] to enforce fairness
whereas crossbar topologies simplifies these quality of service
concerns by construction.

Additionally, the reduced wiring complexity of a NoC system
is bought at a price other than nonuniform latency: collisions can
occur within the network. To resolve these collisions and avoid
protocol deadlocks, on-chip networks usually require additional
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Fig. 3. High level view of (a) bus interleaving required for mux-based crossbars; (b) a traditional matrix style crossbar with arbiter/controller consuming space
and requiring additional input wires; (c) the proposed Swizzle-Switch design that reuses input/output busses for programming/arbitration of the crossbar with the
arbitration logic placed under the dense metal interconnect; and (d) scaling trends of the Swizzle-Switch Interconnect in 32 nm versus a conventional crossbar

(Simulated).

buffers per router node (e.g., to provide multiple protocol lanes
or virtual channels), which consume significant power and area.
As aresult, Borkar ez al. [10] predict that many-core NoCs could
consume as much as 80 W in future systems. In contrast, a
flat crossbar is nonblocking and does not require intermediate
buffers, reducing power and area overheads.

Previous studies address the power and latency scalability
challenges of NoCs by building concentrated and hierarchical
topologies to reduce the required number of on-chip routers [4],
[14], [29]. Our proposed SSN realizes a single-router flat in-
terconnect with a scalable high-radix crossbar design and min-
imal end-point buffering. Fig. 2 illustrates the power savings
achieved by our proposed design for a synthetic benchmark de-
signed to saturate the network (details for this analysis are found
in Section IV).

In this paper, we study the limits of high-radix crossbar in-
terconnects. We leverage a new circuit element, the Swizzle-
Switch, a highly scalable and energy efficient crossbar. We en-
hance the previous Swizzle-Switch design and then use it to build
the SSN: a MOESI-based, many-core processor. The SSN chal-
lenges the conventional notion that crossbars do not scale up to
64 cores by demonstrating how to build a high-radix crossbar in
a many-core system.

III. SwizzZLE-SWITCH: A HIGH-RADIX,

SELF-ARBITRATING CROSSBAR

The SSN is a high-radix crossbar system built using a number
of Swizzle-Switch components. Each Swizzle-Switch component
employs several techniques to reduce the area and power over-
head of high-radix crossbars. The underlying circuit technology
of the Swizzle-Switch was first described in work by Satpathy
et al. [41]-[43]. These brief circuit-oriented papers describe
65 nm and 45 nm test chips that uses synthetic traffic to mea-
sure crossbar power and performance. In this paper we explain
for the first time the theory of operation of this new building
block and evaluate our designs using multithreaded applica-
tions. In this section, we describe the Swizzle-Switch and eval-
uate a scaled design in 32 nm. We address the key architectural
challenges of building a MOESI-coherence 64-core chip multi-
processor using Swizzle-Switches in Section IV.

A. Overview

Conventional mux-based crossbars suffer from a layout chal-
lenge at high bus widths because of complex wire interleaving
within the crossbar itself. Fig. 3(a) shows how four buses each
with four bits must be interleaved to connect to a mux-based
crossbar. To avoid these interleaving structures, more recent
crossbars use matrix-style structures.

Fig. 3(b) shows a typical matrix-style crossbar, where the
connection to each output is made at a crosspoint inside the
crossbar, the inputs can be in any order and no interleaving of
bits from buses is required. Conventionally, these matrix-style
interconnects consist of a crossbar that routes data and a
separate arbiter that configures the crossbar. This decoupled
approach poses two hurdles to scalability: 1) the routing to and
from the arbiter becomes more challenging as the number of
sources and destinations increase and 2) the arbitration logic
grows more complex as the radix of the crossbar increases.
Arbiters that need to distribute their arbitration over multiple
stages incur the overhead of flip-flops to store the control flow
signals. The work done by Passas [38] is an example of the
prohibitive overheads that can be seen when implementing a
a multistage arbiter a high-radix crossbar. In Passas’ work, a
radix-128 crossbar that implements the iSlip algorithm [36]
is shown to have an crossbar arbiter that consumes 60 % of
the total crossbar area. This result further illustrates the area
and power problems conventional matrix-style crossbars suffer
when scaled to large core counts.

To overcome these limitations, we can use the Swizzle-Switch
(SS) to replace conventional matrix-style crossbars. Although
the SS has the same asymptotic behavior as the matrix-style
crossbar, O(n?), it uses circuit techniques to reduce the multi-
plicative constants of that behavior to readily scale to at least
64 cores. The SS combines the routing-dominated crossbar
and logic-dominated arbiter by embedding the arbitration
logic within the router crosspoints. Furthermore, it reuses
input/output buses for arbitration, producing a compact design.
Fig. 3(c) shows a high-level Swizzle-Switch design. To reduce
power, the SS uses SRAM-like technology with low-swing
output wires and a single-ended thyristor-based sense amplifier
[42]. To understand the scalability of the SS interconnect com-
pared to a conventional crossbar design, we generated a series
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Fig. 4. Circuit implementation of the Swizzle-Switch Interconnect. Each output column in the interconnect uses the same request bit from each input bus. Each
input row uses the same bit from each output bus to perform arbitration. The expanded view of the crosspoint shows the stored configuration and crosspoint
connections for each bit. It also shows the programming of priority bits using the output bus. Because the crosspoint is for Input Row 0, the arbitration sense amp
is on output wire 0. Similarly, because it is Output column 1, the request line is drawn from input wire 1.

of layouts across a wide range of radices. Fig. 3(d) shows the
results of this analysis. The SS design scales far better to higher
radix designs, consuming 2.7x less area and performing 2.6x
faster at a radix of 64.

Although the Swizzle-Switch (SS) can implement arbitration
schemes with low logic overhead, we do not propose the SS as
a replacement for all existing switch fabrics. Rather, SS can be
used to aid the scalability of current state of the art fabrics.

B. Layout and Data-Transmission Phase

As shown in Fig. 4, the Swizzle-Switch’s input and output
buses run perpendicular, creating a matrix of crosspoints each
containing a storage element to designate connectivity. Along a
column (output), at most one connection can be made, allowing
each output to connect to at most one input. Along a row (input),
multiple connections can be made. This allows a single input to
multicast to a subset of outputs, or broadcast to all outputs.

Every output channel operates independently in one of
two modes, data-transmission or arbitration. When an output
channel is not allocated, it enters arbitration mode until an
input is granted access to the output channel. Once the output
channel has been granted, it transitions to data-transmission
mode. Data transmission can continue for several cycles as the
input channel transfers the complete payload. Once the input
is finished transmitting data, it releases the channel and allows
the output channel to move back into arbitration mode.

The circuit details of the data transmission phase are illus-
trated in Fig. 4. During data transmission, the output buses are
pre-charged to “1.” The input channel then drives the hori-
zontal wires with the data. At crosspoints where the “Granted
FF (Flip Flop)” stores a “1,” the input bitlines are coupled to the
precharged output bitlines with a pass gate. If the input bitline
is “0,” the output bitline will discharge and the sense amplifier
at the read-buffer will sense the data. The “Granted FF” uses a
thyristor-based sense amplifier to set the enabled latch, which
only enables the discharge of the output bus for a short period
of time, reducing the voltage swing on the output wire. This
reduced swing coupled with the single-ended sense amplifier
helps to increase the speed, reduce the crosstalk, and reduce the
power consumption of the Swizzle-Switch.

C. Arbitration Phase

Any output channel that is not in the data transmission phase
is in arbitration phase. In this phase, each output channel will
grant a single input channel access to transmit data. The input
channel with highest priority is granted access. The Swizzle-
Switch uses an inhibit-based approach to accomplish this ar-
bitration. When an output channel is requested, input channels
will inhibit other inputs with lower priority. Consequently, man-
aging the priorities of each input allows for the implementation
of various priority schemes. There are two novel aspects of the
arbitration design. 1) The priority bits stored in each crosspoint
are used to determine the winner of the arbitration. 2) Each input
repurposes a particular bit of horizontal input bus to assert a re-
quest signal and is assigned a particular bit of the vertical output
bus to use as an inhibit line.

1) Arbitration Mechanism: The conceptual view of in-
hibit-based arbitration of a single output column for a five-input
Swizzle-Switch is shown in Fig. 5(a). The arbitration for an
output channel can represented by a matrix (M) of requests (1)
and inhibits (X ). A row of bits in M correspond to the storage
elements labelled “priority bits” in the expanded crosspoint
view in Fig. 4. An input In; inhibits an input In; if and only if
the entry My; ;y is 1, indicating that I'n; has priority over In;.
In this example, if input /ng and In; are both arbitrating for the
output channel then Ino would inhibit In; (since M, 1y = 1)
and win the arbitration between the two requesting inputs.
However, if Ing and Ins were in arbitration with each other,
then Iny; would win the arbitration by inhibiting Ing (since
M(3,5y = 1). The priority for an input is then the number of
other inputs that it can inhibit.

Fig. 6 illustrates the operation of the arbitration circuit. The
same priority scheme from Fig. 5(a) is used. The vertical output
OutK; bit-line is repurposed as inhibit line X; during the ar-
bitration phase. The input channel I3 has 1°s stored in all its
priority bits Ms ; and hence has the highest priority. The input
channel Iny has priority over only inputs Ing and In; (be-
cause only these priority bits are set). At the start of arbitra-
tion, all inhibit lines are precharged. Then, for each competing
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and sent back to the input to begin data-transmission mode.

input channel, if the priority bit [i.e., M(; ;)] is set, the corre-
sponding inhibit line (i.e., X;) is discharged via a pass tran-
sistor. Each input channel In; monitors inhibit line X; to deter-
mine if it won the arbitration. If the inhibit line is discharged, a
higher-priority channel must have requested the output and con-
sequently In; loses the arbitration. Conversely, if the inhibit line
remains precharged, then no higher-priority channel requested

the output. The arbitration result is latched in the “GrantedFF”
to set up the connection for data transmission.

Note that though our examples illustrate unicast requests,
each input can request multiple output columns. Together, the
bit-lines of an input port constitute a multi-hot signal to request
a subset of output channels. The priority bits stored in the
different crosspoints are used to determine the winner of the



SEWELL et al.: SWIZZLE-SWITCH NETWORKS FOR MANY-CORE SYSTEMS

283

-]

6007  Fabric size : 64" 64 (128 bit channel)

\

wwz'g

..............

(@)

= —
____________ ~N =
______ S 5 g
3 = 400 Technology :45nm g
3 = Temperature : 25°C =
3 x\ 143
__________ v g Ll &
T 200 559MHz, 4.47Tbps @ 1.1V @
[ 511MHz, 4.09Tbps @ 1.0V 3 é’
34.2um . Nominal efficiency: 3.4Tb/s/W i

« Peak efficiency: 7.4Tb/s/W @0.6V
0 T T T T T T 0
Crosspoint 06 07 08 09 10 1.1
Supply Voltage (V)
(b)
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arbitration. By updating the priority every time the channel is
granted, fair arbitration can be achieved.

2) Arbitration Priority Update: Fair scheduling algorithms
can be implemented in the Swizzle-Switch by resetting and
setting the appropriate inhibit bits in the arbitration matrix.
Fig. 5(b) shows how least recently granted (LRG) priority can
be achieved using the Swizzle-Switch’s inhibit-based priority
scheme. In this example, inputs 0, 2, and 4 are all arbitrating for
the output channel. Input 4 wins the arbitration since it has the
highest priority amongst the arbitrating requests. To achieve an
LRG update, we first reset all bits in the row of In4 to enforce
that input 4 can not inhibit any other request in the matrix.
Next, we set all bits in the inhibit column of X4 to enforce that
all requests can inhibit input 4 during the next arbitration cycle.
Thus, the combination of set and reset operations achieves
LRG by giving least priority to input 77,4 and incrementing the
priority of all other inputs that previously had lower priority
then In4 by 1. LRG arbitration helps to ensure starvation-free
operation.

D. Silicon Validation

Satpathy et al. have validated the feasibility of the Swizzle-
Switch building block with a fabricated and tested silicon pro-
totype [43]. The prototype chip was manufactured in a commer-
cial 45 nm technology and consisted of a 64 x 64 Swizzle inter-
connect with 128-bit busses. The total size of the Swizzle inter-
connect was 4 mm?. The interconnect was driven by synthetic
traffic generators (including support for broadcast and multicast
traffic) with a built-in test circuit that verified correct transmis-
sion. Fig. 7 shows the die photo of the silicon test chip. Mea-
surements of the chip show that at full voltage the Swizzle in-
terconnect operates around 559 MHz and provides 4.47 Tb/s of
bandwidth. The total power of the interconnect was 1.32 W at
full voltage under a 20% switching factor. Whereas Satpathy et
al. [43] introduces the Swizzle-Switch circuit design, that work
does not explain the theory of operation nor address the architec-
tural and layout challenges of how the new crossbar design can
be leveraged in practical chip interconnect architectures, which
is the focus of Section IV.
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Fig. 8. Bandwidth and Speed of a Swizzle-Switch with 128-bit busses in 32 nm.

E. Enhanced 32 nm Design and Analysis

We scale the design of the Swizzle-Switch (SS) to 32 nm
through SPICE modeling. All results are validated against the
45 nm test chip. In addition, we further optimize the crossbar for
higher frequencies at high radices. The schematic-based SPICE
crossbar model includes word-/bit-line drivers, parasitic loads,
and worst-case coupling capacitance to neighboring wires. For
a specific radix and bus width, we optimize driver sizes to max-
imize crossbar frequency and utilize the additional metalliza-
tion layers to reduce area. We evaluate two crossbar designs:
one with single-segment word-/bit-lines and another with op-
timally-spaced repeaters. Metal wire delay scales quadratically
with distance while repeated wire delay scales linearly. Thus,
for high crossbar radices, adding repeaters drastically reduces
word- and bit-line delay at the cost of increased power.

The frequency of the SS speed is dominated by wire RC delay.
The decrease in the length and width of the wires from 45 nm
to 32 nm leads to a nearly 2 X increase in speed. Futhermore, an
enhanced version of the repeater structure as well as improved
placement of the repeaters acounts for additional speedup. Fig. 8
shows total crossbar bandwidth and maximum frequency as a
function of radix, with and without repeaters, for a design with
128-bit busses. A crossbar of radix 64 x 64 x 128 supports a
bandwidth of 13 Tb/s and can operate at greater than 1.5 GHz

with an area of about 1 mm?.

IV. INTERCONNECT ARCHITECTURES

In this section, we present three different many-core chip de-
signs based on alternative interconnect architectures. First, we
present our proposed flat crossbar design, the Swizzle-Switch
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Fig. 9. High-level architecture diagram (a) of a 64-core system built with a Swizzle-Switch based crossbar. Floor-plan (b) of our system and estimated dimensions.
Octants are colored to aid the reader in seeing how wires leave the crossbar. The total chip area is 204 mm?, each core/L1 tile consumes 0.74 mm?, the L2 tiles

consume 4.5 min?, and the Swizzle-Switch consumes 6.65 min?.

Network (SSN). The SSN uses insights derived from coher-
ence traffic classification to build a 64-core, cache-coherent
many-core architecture—a crossbar design that was previously
thought to be impractical [32], [40]. As a baseline for compar-
ison, we describe a conventional Mesh network. Finally, we
describe how the high-radix Swizzle-Switches can be used to
improve a Flattened Butterfly interconnect.

A. Common Components

For all three designs, we target an industrial 32 nm process.
We estimate core size, speed, and power based on published
characteristics of an ARM Cortex-AS5 [3] in 32 nm. The 32 nm
A5 achieves a frequency of 1.5 GHz and occupies 0.18 mm?,
We estimate cache area, latencies, and power using Artisan
SRAM compiler estimates and SPICE simulations. We select
total cache size to target a 200 mm? chip in 32 nm technology.
The design uses eight interleaved memory controllers. Each L2
address range is assigned to the nearest memory controller in
order to minimize interconnect congestion.

Our target 32 nm process provides a nine-layer metalliza-
tion stack. In this metallization stack there are four 1.X, two
2X, two 4X, and one 8X metal layers. The 1.X metal layers
and one of the 2.X metal layers are reserved for local routing
(within the core/cache). The 8 X layer is reserved for power and
clock routing. That leaves two 2X and two 4.X layers for global
routing. The interconnect for the NoC and SSN uses only parts
of one 2X and parts of one 4X layer. Wire delays were de-
termined using wire models from the design kit using SPICE
analysis including repeaters, taking into account cross-coupling
capacitance of neighboring wires and metal layers. For inter-
connect wires, we consider four options that trade off area for

speed. We can use a 4X or 2X metal layer with either single
or double spacing. Repeater insertion is adjusted so that re-
peaters are placed in the gaps between cores. The repeater place-
ment was considered for all topologies to accurately estimate
timing. The resulting wire delays ranged from 55-350 ps/mm
depending on repeater placement, wire spacing, and metal layer.

B. Swizzle Switch Network

The Swizzle-Switch Network (SSN) combines novel circuit
and architectural insights to challenge the conventional scaling
limitations of crossbars. Crossbar-based systems are desirable in
many-core chips because they can ease the burden of managing
highly variable memory access latencies. Thus, an SSN-based
system can take advantage of new crossbar technology to pro-
vide uniform memory access at the many-core level.

Fig. 9(a) shows one possible configuration of a SSN system.
The SSN connects 64 cores, each with their own private L1
instruction and data caches, to 32 banks of L2 cache. The L2
cache banks are then connected to DRAM. Fig. 9(b) shows one
potential layout of such a system. Each tile comprises an ARM
Cortex A5 and 32 kB L1 I/D caches. The L2 cache is banked in
32 tiles of 512 kB each and placed around the perimeter of the
cores. Memory controllers are placed in the periphery and are
directly connected to the L2s. The colored octants indicate the
association of L2 and core tiles to the centralized switch.

1) Coherence Protocol: A novel design aspect of the SSN
is it’s use of three Swizzle-Switches to enable a directory-based,
MOESI coherence protocol. MOESI coherence requires an in-
terconnect fabric to facilitate communication among the private
(L1s) and shared (L2s) caches in the system. Fig. 10(a) classi-
fies coherence messages into four types: L1 — L1, L1 — L2,
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Fig. 10. (a) Classification of communication messages required for coherence. (b) Floor-plan and wiring diagram for combining three Swizzle-Switches into a
64 x 64 x 128 bit crossbar. The wires are labeled by the quadrant to which they connect. Each wire in the diagram represents either 3, 5, or 8 busses, where each
bus is 128-bits. The overall area of the Crossbar is 6.65 mm?*(~4% of the 64 tile system).

L2 — L1, and L2 — L2. Note that MOESI protocols re-
quire no L2 — L2 communication. Consequently, we opti-
mize the SSN to provide only the three required communication
paths, each via dedicated Swizzle-Switches (omitting a crossbar
for L2 — L2 communication). This optimization reduces SSN
power requirements by 17% relative to a switch with all four
communication paths.

In addition, the multicast ability of the SSN facilitates fur-
ther traffic and power optimizations for invalidation messages.
Within the SSN, the invalidations can be multicast to several
L1 caches simultaneously (i.e., driving the SSN input bus only
once). In contrast, NoC designs either transmit individual inval-
idation messages per destination or must employ sophisticated
control policies to enable broadcast/multicast [25].

2) Timing and Layout Evaluation: Fig. 10(b) illustrates the
layout of the three Swizzle-Switches needed to build a complete
SSN crossbar: two for the bi-directional interconnect from
Lls — L2s and one for communication of shared data from
Lls — Ll1s. Each depicted wire represents several 128-bit
buses. Busses are grouped by the chip octant to which they
are routed, as identified in Fig. 9. The diagram reflects the
relative locations of input/output busses and corresponds to the
floorplan in Fig. 9.

To calculate the area of the SSN itself, several measurements
are needed. We determine the area of each Swizzle-Switch
from detailed layouts; the two smaller Swizzle-Switches oc-
cupy 0.53 mm? while the larger requires 1.1 mm?. Routing
over the Swizzle-Switch is not possible (as it occupies all
global-routing metal layers), so all busses that pass around the
Swizzle-Switches consume area. We determined the required
routing area for these busses as well as area for fan-out to the

proper metal layers and spacing for connections to the global
interconnect.

Overall, including these route-around overheads, the Swizzle-
Switch network is 2.58 mm x 2.58 mm, for a total area of 6.65
mm? (~4% of total chip area). The SSN layout also includes
some empty space at the periphery due to symmetry/routing
constraints, however, this empty space could be used for other
circuitry. Considering this additional overhead, the total area of
the SSN-based chip is 204 mm?, a 7% increase in area over the
Mesh and Flattened Butterfly topologies.

Interconnect signals take one cycle to reach the crossbar, one
cycle to arbitrate, one cycle to pass data through the crossbar,
and one cycle to reach the destination. Global wires are routed
in a mixture of 2X and 4X metal depending on the distance
routed. As a result, the longest wires operate at 1.7 GHz. At the
most routing dense point in the layout, just outside the Swizzle-
Switch, the 4X metal layer utilization due to SSN routing is
60% of routing tracks and the 2.X metal layer utilization is 40%
of routing tracks. In other parts of the chip, routing density due
to SSN routing drops substantially and is not a significant factor.
From Fig. 8 the 64 x 64 x 128 repeated crossbar configuration
was selected to maximize bandwidth while achieving a 1.5 GHz
clock frequency to match the cores.

3) Reliability: The SSN’s monotholic design can potentially
make it susceptible to reliability issues if one or more of the
input/output ports experiences a fault. Modifications to enhance
the robustness of an SSN are available because of it’s SRAM-
like layout and it’s small total area. Error correction techniques
(e.g., ECC) that are used in standard SRAM systems can also be
used to enhance SSN reliability. Additionally, redundant output
ports could be used to aid fault recovery mechanisms.
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Fig. 11. Floor-plan of the Mesh and Flattened Butterfly systems with estimated dimensions. The total size of both chips is 190 mm?.

C. Mesh Topology

We contrast the SSN against a Mesh topology, which has
been used in a number of recent many-core designs [22], [29].
A Mesh is amenable to a tiled design, is easy to lay out, and
does not require any long, cross-chip wires. Moreover, by dis-
tributing L2 cache slices in each core tile, Meshes can facilitate
L2 cache designs that provide low latency from the core to its as-
sociated L2 slice. Despite these advantages, Mesh interconnects
do not always scale well because they are vulnerable to issues
such as router congestion, network power, and nonuniform (and
high worst-case) access latencies to remote L2 banks. In addi-
tion, bursty and hotspot traffic patterns that often arise in real
applications can lead to high queuing delays even if overall in-
terconnect utilization is relatively low.

Fig. 11(a) shows our Mesh layout. Each tile comprises one
ARM Cortex-AS, private 32 kB instruction and data caches,
a 256 kB slice of the shared L2 cache, and a router that links
the tile to its four nearest neighbors. Tiles at the periphery con-
nect to the memory controllers. We employ four-stage pipelined
routers, using lookahead routing to eliminate the need for a route
computation stage [16]. To prevent deadlock, we use XY-di-
mension ordered routing and implement three virtual networks
(request, response, writeback) over one physical network. To
reduce congestion (e.g., due to head-of-line blocking), we then
allocate three virtual channels per virtual network.

The area of each tile is 3 mm?2, resulting in a total chip area
of 190 mm? (excluding memory controllers). Router latency is
dominated by virtual channel allocation and arbitration time,
resulting in a peak frequency of ~3.5 GHz. The interconnect
links (channels) are 16 bytes wide and 1.73 mm in length. When
routed in 2.X double-space metal they can achieve a speed of 3.1
GHz. We operate the NoC at 3 GHz to match an even multiple
of the core frequency.

D. Flattened Butterfly

As a second baseline for comparison, we have also designed
a flattened butterfly network (FBFly) [29], as recent work has
demonstrated that this topology can outperform meshes due to
decreased hop count between any tile pair. For example, a 4-ary,
3-flat FBFly can support 64 cores while bounding the router hop
count to 2 (as opposed to a 64-core Mesh average hop count of
8). The FBFly requires considerably higher radix routers than
the Mesh. Large high-radix routers are typically slow, however,
by using a Swizzle-Switch as the crossbar element within the
router, we enable the design of a FBFly at a 40% higher fre-
quency compared to a conventional crossbar-based router de-
sign. Thus, we demonstrate how a Swizzle-Switch can also be
used as a building block for high-radix network design.

Fig. 11(b) shows the proposed layout of the Flattened But-
terfly topology. Tiles in the FBFly are identical to those in the
Mesh. In this layout, each of the 16 routers are connected to 4
tiles creating a 64 node network. The radix for each router in
the FBFly can be either 14 or 16 because there are three links
for routers in the same row, three links for routers in the same
column, four links to the local L1s, four links to the local L2s,
and up to two links to memory controllers. Although adaptive
routing can take advantage of the FBFly’s path diversity, imple-
menting such a technique typically includes a signficant amount
of router complexity. This work simplifies FBFly routing by al-
ways routing to the XY-dimension ordered path that requires
two-hops from source to destination.

The links to nearest-neighbor routers are 3.46 mm and are
routed in the 4X double spaced metal. These nearest-neighbor
links can operate faster than 3 GHz. For links to nonnearest-
neighbor routers, the wire lengths are either 6.92 or 10.38 mm.
These links are both routed in 4 x double spaced metal, resulting
in up to 620 ns of delay. To allow the network to operate at 3
GHz, these links are pipelined in two stages.
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TABLE 1
gem5 64-CORE SIMULATION PARAMETERS

Feature Mesh & Flattened Butterfly | Swizzle-Switch Network

Processors 64 in-order cores, 1 IPC, 1.5 GHz

L1 Caches 32kB I/D Caches, 4-way associative, 64-byte line size, 1 cycle latency

L2 Caches Shared L2, 16 MB, 64-way banked, 8-way associative, 64-byte Shared L2, 16MB, 32-way banked, 16-way associative, 64-byte

line size, 10 cycle latency line size, 11 cycle latency

Interconnect 3.0 GHz, 128-bit channels, 4-stage Routers, 3 Virt. Networks w/3 1.5 GHz, 64x32x128bit Swizzle-Switch Network

VCs per Network
Main Memory 4096MB, 50 cycle latency
TABLE II
CACHE MISS RATES AND L1 Miss LATENCY (IN CPU CYCLES)
L1 Miss Latency to an On-ChipJr Location Speedup
Benchmark L1 MPKI L2 MPKI Mesh Flattened Butterfly Swizzle-Switch Network over Mesh
Average | Std. Dev. Average Std. Dev. | Average Std. Dev. FBFly SSN

Barnes 6.2 0.5 53.6 16.1 32.0 55 27.1 22 1.12x 1.15%

Cholesky 2.4 1.2 572 16.7 323 5.8 24.7 53 1.04x 1.07x

FFT 4.4 1.4 57.5 16.7 332 6.7 27.2 73 1.11x 1.14x

FMM 2.5 0.7 554 16.5 32.1 5.7 25.9 39 I.11x 1.15%

LuContig 1.2 0.7 57.1 16.4 32.0 5.6 23.9 53 1.02x 1.03x

LuNonContig 1.8 2.0 60.5 16.1 323 74 22.1 9.6 1.04x 1.05x

OceanContig 17.9 7.1 54.7 16.2 325 6.6 26.4 6.0 1.29% 1.43x

OceanNonContig 272 8.2 54.2 16.0 323 6.0 26.7 5.1 1.31x 1.45%

Radix 22.1 8.6 544 16.1 272 10.3 26.8 43 1.28x 1.37x

Raytrace 7.7 2.0 56.2 16.7 32.6 6.0 25.9 3.8 1.57x 1.82x

WaterNSquared 33 0.5 544 16.2 324 5.9 26.9 43 1.05% 1.07x

WaterSpatial 0.6 0.2 56.9 16.6 32.5 6.8 25.0 7.8 1.02x 1.02x

Average 56.2 16.4 31.9 6.5 25.6 54 1.15x 1.21x

1 Excludes main memory accesses
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Fig. 12. Cycle Analysis for 64 core Mesh, FBFly, and SSN topologies during parallel regions of the SPLASH2 benchmarks.

n 60
V. SIMULATION METHODOLOGY % 5 B Mesh M FBFLY =SSN

We evaluate our three interconnect designs using detailed %40

timing simulation with the gem5 full-system simulator [6]. We &30

extend gem5 to model the three interconnects and a MOESI di- ?, ig Jl

rectory-based coherence protocol. We configure the intercon- & . - | [ITI I ILlna N P

nect simulation using timing characteristics derived from the SN gNRNRNILREEERER § CE LR L]

CPU Cycles -

SPICE and layout analysis discussed in the previous sections.
Table I details the simulation parameters. To account for nonde-
terminism in threaded workloads, we randomly perturb memory
access latencies and run multiple simulations to arrive at stable
runtimes as described by Alameldeen ef al. [1].

We evaluate using benchmarks from the SPLASH2 [50] suite.
The SPLASH2 benchmarks are of particular interest for the
study of on-chip interconnects as they have diverse sharing and
data migration patterns between cores as shown by Barrow-
Williams et al. [5].

VI. RESULTS

We evaluate the the Swizzle-Switch Network (SSN), Mesh,
and Flattened Butterfly (FBFly) systems according to four met-
rics: overall runtime performance, average miss latency, miss la-

Fig. 13. Histogram of L1 cache miss latency for the Radix benchmark.

tency variation, and energy/power. Our analysis shows that both
of the topologies enabled by our high radix crossbar—the FBFly
and the SSN—perform noticeably better than the Mesh even
though the SSN runs at only half the frequency. The FBFly is
15% faster in overall runtime, has a 1.76x reduction in average
L1 on-chip miss latency, and experiences a 2.52x reduction in
the standard deviation of L1 on-chip miss latency compared to
the Mesh. The SSN has a 33% lower interconnect power, de-
creases the run time by 25%, reduces the average L1 on-chip
miss latency by 2.2x, and provides a 3 x reduction in the stan-
dard deviation of L1 on-chip miss latency relative to the Mesh.
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Fig. 14. Total interconnect power (top) and energy (bottom) broken down by components within the Mesh, FBFly, and SSN systems for all benchmarks tested.
Overall the SSN reduces interconnect power by 33% over the Mesh and 28% over the FBFly on average. As a result of the lower interconnect power and better
performance the total SSN system energy is 25% less than the Mesh and 11% less than the FBFly.

A. Performance Analysis

Table II shows the speedup for each benchmark and Fig. 12
shows execution time breakdowns comprising three categories:
core active cycles, memory stall cycles, and synchronization
stall cycles. We observe three different performance-impact sce-
narios in the results. The first arises for benchmarks with high L1
miss rates and substantial sensitivity to L2 access stalls. Ocean-
Contig, OceanNonContig, and Radix all have high L1 Misses
Per KiloInstruction (MPKI) as shown in Table II and also spend
a substantial fraction of execution time on memory stalls as
shown in Fig. 12. The Swizzle-Switch-based topologies substan-
tially accelerate these workloads, due to the improved average
L2 access latency.

The second class of workloads, including Raytrace and
FMM, spend a large fraction of time in synchronization stalls.
These particular benchmarks have locks that are sensitive to
miss latency. As average miss latency improves, synchro-
nization time is also reduced, yielding significant speedups.
When synchronization stalls arise due to load imbalance, as in
LuNonContig, there is no significant speedup since improving
memory latency does not resolve the load imbalance.

The last scenario arises for benchmarks with a low L1 MPKI,
for example, WaterSpatial. Such benchmarks are insensitive to
L2 latency as their working sets fit in L1, and thus, achieve only
minimal performance gains (2%) from the faster interconnects.

In Fig. 13 we show the miss latency distribution for the Radix
benchmark (other benchmarks have similar miss latency distri-
butions). Within this distribution, accesses with latencies from
10-80 cycles are serviced on chip, whereas those with laten-
cies above 100 cycles are misses to main memory. The figure
illustrates that the high-radix interconnects achieve tighter la-
tency distributions for on-chip accesses. The wide latency vari-
ance in the Mesh is due to the highly-variable hop count (as
many as eight hops) for some messages. In contrast, messages
on the FBFly require at most two hops, while the SSN requires
only one (variance arises only due to endpoint queueing and
latency differences between L1-to-L1 and L2-to-L1 transfers).

The average and standard deviation of the miss latency is given
in Table II. While the Mesh maintains a standard deviation of
L1 miss latency of 16.4 cycles, the FBFly is able to achieve a
standard deviation of 6.5 cycles and the SSN tightens the stan-
dard deviation even further to 5.4 cycles. The more predictable
access latency in the FBFly and SSN interconnects makes it
easier for programmers to analyze performance and balance
work across cores and reduces the need for careful on-chip data
placement.

Overall, we have shown that high-radix topologies enabled
by the Swizzle-Switch scale well to 64 cores and achieve signif-
icant speedups over a Mesh. The FBFly on average sees a 15%
speedup over the Mesh, while the SSN further increases the av-
erage overall speedup over the Mesh to 21%.

B. Energy and Power Analysis

Previously, one of the main criticisms of high radix cross-
bars was their high power consumption [32]. However, our op-
timized design demonstrates that high-radix interconnects can
be more power efficient than low-radix topologies, which re-
quire a larger number of routers and buffers. Fig. 14 shows the
power consumption for the three interconnects broken down
into switch, buffers, link, and clocking power subcomponents.
The Mesh has the highest interconnect power consumption. The
FBFly, on the other hand, runs at the same high frequency as
the Mesh and has pipeline buffers on its longer wires, there-
fore requiring higher dynamic wire power than the Mesh but
has lower overall router power consumption. The SSN trades off
reduction in buffer power with increase in wire dynamic power
while maintaining similar switch power. Overall, the SSN re-
duces interconnect power by 33% over the Mesh and 28% over
the FBFly on average.

The total system energy consumption of the SSN is reduced
because of the overall runtime improvement. The energy sav-
ings arises from conserving leakage energy in the core and L2,
which shrink as performance increases and total runtime is re-
duced. From the plot one can see that the largest improvements
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Fig. 15. SSN, FBFly, and two-cycle Mesh speedups over a four-cycle Mesh.

in energy consumption correlate to the benchmarks with the
largest performance improvement, i.e., Raytrace. As a result
of the lower interconnect power and reduced runtime, the total
SSN system energy is 25% less than the Mesh and 11% less than
the FBFly.

C. Sensitivity Analysis

To further explore SSN tradeoffs, we perform sensitivity
analysis on three key parameters: router pipeline depth, inter-
connect frequency, and traffic from out-of-order cores.

1) Router Pipelines: Fig. 15 shows the performance gains of
an idealized two-stage router pipeline (employing pipeline by-
passing and speculative virtual channel allocation) [39] over the
baseline four-stage Mesh routers. We study an idealized design
that assumes bypassing is always possible and speculative vir-
tual channel allocation never fails (i.e., by configuring the sim-
ulation with a two-stage pipeline). Even under these idealized
assumptions, the SSN outperforms the two-stage Mesh by an
average of 12.4%. Note that this estimate is conservative: gains
would be higher when compared to an accurate implementation
of a speculative router (due to mispeculation stalls). We do not
consider speculative routers for the FBFly topology because the
higher radix make their implementation considerably more dif-
ficult.

2) Interconnect Frequency: Fig. 16 evaluates the perfor-
mance of the SSN, the four-cycle Mesh and the ideal two-cycle
Mesh when the interconnect frequency is varied from 1.5 to 6.0
GHz. To isolate the impact of the interconnect, the cores held
at a constant 1.5 GHz for all design points. As expected, a flat
crossbar system is always advantageous to a Mesh when the
interconnect frequencies are equal. However, the study shows
that the average number of router hops in the network-on-chip
system is such a prohibitive factor that it would take a Mesh
running at 6.0 GHz to match the performance of a SSN running
at 1.5 GHz. Consequently, we show that the benefit of building
a flat system can be significant given the feasibility constraints
of building a network-on-chip with an aggressive clock and a
small number of pipeline stages.

3) Out-of-Order Cores: We demonsrate the performance
impact of using out-of-order (O3) cores on a 64-core system
in Fig. 17. Replacing the in-order cores with O3 cores would
present significant area and power overheads to both the SSN
and NoC systems. We ignore those limitations in this example
and focus on generating as much core-stimulated traffic as
possible. We do this by placing 1.5 GHz, eight-wide O3 cores
(64 Inst. Window, 64 LD/ST Queue, and 256 Phys. Regs.) in
each network and assuming the frequency of the networks are
equivalent to their achieved speeds when using in-order cores.
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Fig. 17. Speedups of a 64-core SSN using Out-of-Order (O3) cores over
64-core NoCs also using O3 cores. Benchmarks shown represent the three
traffic classes referenced in Section VI-A.

The increased traffic from O3 cores magnifies the workload
trends seen in Section VI-A. For the compute-intensive Wa-
terNSquared, the SSN achieves a in-order core speedup over
the Mesh of 7%, but sees a 31% gain when O3 cores are uti-
lized. For memory-intensive Radix and synchronization-sensi-
tive Raytrace, the SSN realizes in-order speedups of 37% and
82%. Those gains further improve to 1.96x and 3.24 x speedups
with O3 cores. This shows that a SSN can be of even greater
benefit if constructed for systems with O3 cores.

VII. 3-D SwizZLE SWITCH NETWORK

Three-dimensional integrated circuits (3-D ICs) are attractive
options for overcoming the barriers in interconnect scaling. In a
3-D chip, multiple device layers are stacked together with direct
vertical interconnects tunneling through them. The most impor-
tant benefits of a 3-D chip over a traditional 2-D design is the
reduction of global interconnects. We propose a combination of
3-D integration and the Swizzle-Switch Network to further im-
prove performance.

A. 3-D Integration Technology

There are many techniques for 3-D integration. Simple
techniques such as face-to-face bonding allow stacks of 2 chips
while more complicated techniques that use wafer thinning
allow for larger stack systems. For our analysis we use figures
from a 3-D integration technology by Tezzaron [20]. Their
technique is a via-first, back-end-of-line integration technology
that has been demonstrated in several test chips [15], [28]. In
the system of Fick ef al. [15] the Tezzaron technology is used
to stack four layers of CMOS logic on top of three layers of
DRAM. The layers are thinned to less than 12 m, an important
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Fig. 18. (a) 3-D Swizzle-Switch Network achieved by stacking four 2-D Swizzle-Switch Network layers and using TSV’s to interconnect the layers. (b) The modified
circuits for the 3-D Swizzle-Switch Network. Even numbered outputs are arbitrated on the top layer, odd outputs are arbitrated on the bottom layer. Input request
lines must be forwarded from the top — hottom or bottom — top through TSV connections. The total number of TSVs required is equal to the number of

arbitrating crosspoints times the number of layers.

characteristic for reducing thermal resistance and RC delays.
Additionally, the TSVs themselves are less than 6 gm thick
while the size of each TSV is only 1.4 xm?. As such, they can
be placed with a density of 62 000 TSVs per square mm. The
resistance (< 0.35 §2) and capacitance (2 fF) of these TSVs
are extremely small compared to other 3-D technologies. This
allows for fast and short connections between layers. In fact, in
a four-layer stack the length of a TSV running the whole height
of the stack is <50 pm.

B. 3-D-SSN Architecture

We now turn to a 3-D-SSN design, where the basic 2-D-SSN
is folded over multiple layers while holding the overall design
constant at 64 cores. By folding the Swizzle-Switch over mul-
tiple layers the total size of the Swizzle-Switch is reduced and
the shorter wires result in lower capacitance. This reduction in
capacitance is translated into a speedup of the Swizzle-Switch
itself. In addition the number of inputs and outputs per layer is
reduced, leading to a more compact design where the links to
and from the Swizzle-Switch are shorter and faster. The basic
design we explore is presented in Fig. 18(a). In the four-layer
system each layer contains 16 cores and 8 L2 banks. The cen-
tral Swizzle-Switch communicates through TSVs to the other
layers in the system. The modified circuit diagram is presented
in Fig. 18(b). For illustrative purposes, we present only two in-
puts, two outputs, and two layers. The system requires that in-
puts on one layer forward requests to the proper output layer
via TSVs. The total number of TSVs at each layer is equal to
the total number of arbitrating crosspoints times the number of
layers. The exploration of more sophisticated 3-D designs is left
for future work.

C. Floorplanning

If the total area of the 2-D-SSN is split evenly across the
3-D layers it will result in a 50% and 75% reduction in area
for a 2 and 4 layer system, respectively. However, the 2-D-SSN
is already very dense in both wiring and logic. Currently the

M 2-Layer -
W 4-Layer

Radix

OceanCtg  Ocean NonCtg

Raytrace Average

Fig. 19. Speedup of the 3-D-SSN on two-layer and four-layer systems com-
pared to a 2-D-SSN. The benchmarks most sensitive to interconnect delay are
plotted as well as the average across all benchmarks.

2-D Swizzle-Switch Network system requires one additional un-
used routing lane per four lanes of dedicated routing to fit the
required logic. The addition of TSVs in the system will di-
late the size further. The total number of TSV’s required per
layer is equal to the total number of arbitrating crosspoints times
the number of layers. Given the minimum spacing in the Tez-
zaron process, this corresponds to an additional routing track
every eight tracks in the two-layer system and every four tracks
in the four-layer system. This means the Swizzle-Switch in the
two-layer 3-D-SSN is 57% of the size of a Swizzle-Switch in 2-D
and the Swizzle-Switch in the four-layer 3-D-SSN is 32% of the
size of a Swizzle-Switch in 2-D.

The reduced area of the SSN yields a faster design, and the
smaller number of devices per layer shortens the links to the
SSN. After careful floorplanning of the system, the two-layer
version achieves an interconnect speed of 2.2 GHz, and the four-
layer version achieves an interconnect speed of 2.7 GHz (core
speeds remain at 1.5 GHz).

D. Performance Results

Fig. 19 presents the overall speedup of the 3-D-SSN nor-
malized to the 2-D version. On average the 3-D system sees
a 8% and 10% speedup for a two-layer and four-layer system,
respectively. For benchmarks where the interconnect latency
was critical—Ocean, Radix, and Raytrace—the improvements
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Fig. 20. HotSpot simulation of a 64 core SSN system on 1 and 4 layers for the worst case benchmark. The 1-layer system corresponds to a 2-D-SSN with a peak
temperature of 51 ° C. The peak temperature of the 3-D chip is 60 ° C (The hottest layer is shown as the top of the 3-D stack).

are more significant showing a 15%-30% speedup. Recall from
Section VI that these benchmarks improved significantly due to
either faster L2 accesses, or faster synchronization and as such
reflect further gains in a 3-D design. The other benchmarks only
showed marginal sensitivity to interconnect latency and result
in only modest gains 1%—6%, lowering the average across all
benchmarks.

E. Thermal Analysis

As with any 3-D chip design, thermal constraints can be a
matter of concern. To verify the system operates in a thermal re-
gion that can be cooled by conventional solutions, we perform
analysis of the system with the HotSpot 5.1 [46] simulator. The
thermal characteristics of the Tezzaron process were modeled
in HotSpot and power draw numbers from the Ocean bench-
mark are plotted—the hottest benchmark. Power numbers for
the Cortex-AS5 were based on published data and scaled to 32
nm. Fig. 20 shows the simulated system for a single layer and
a four-layer stack. The low power design of the Cortex-AS5 pro-
cessor helps to make stacking feasible. The peak temperature of
the 1 and 4 layer systems is around 51 °C and 60 ° C, respec-
tively, within the capability of passive cooling solutions. The
HotSpot analysis did not consider the thermal dissipating char-
acteristics of the TSVs, which would have further reduced the
peak temperature.

VIII. RELATED WORK

The paradigm shift toward many-core systems has led to
a renewed interest in interconnect research and a transition
from traditional bus-based systems [32] to more sophisticated
topologies, including hierarchical bus models [7], [14], rings
[19], [45], spidergon networks [8], mesh network-on-chips [4],
[49], flattened butterfly on-chip networks [29], express cube
on-chip networks [17], and crossbars [2], [26], [52]. The ability
to provide uniform cache access latency makes crossbars an
appealing option because predictable cache access latencies
allow for quality-of-service guarantees and ease of program-
ming. In addition, previous research has shown that crossbars
can enable performance benefits in coherence protocols [11] as
well as the construction of cache hierarchies [34]. While some
studies have noted that link latency can increase to a point that
it would be intolerable compared to an NoC system [9], [47],

we prove through detailed floorplans and spice analysis that
this is not the case.

The Swizzle-Switch Network(SSN) proposed in this paper op-
timizes the crossbar interconnect allowing for high performance
many-core systems with minimal power and area overheads
readily scaling to support 64-core systems. This work demon-
strates the benefits of a crossbar-based architecture for systems
that are required to support a wide range of communication pat-
terns. Related works have also leveraged the benefits of high-
radix switches by using narrow channels to increase crossbar
radix and build larger systems from these high-radix building
blocks [30], [44]. There has also been similar work analyzing
crossbar interconnects for large-scale CMPs. Some assume ide-
alized crossbars with minimal latencies to calculate best-case
performance [40], others use crossbars to connect small clus-
ters of cores in a hierarchical system [48], and yet others study
pipelined/buffered crossbar systems [31], [37]. The SSN differs
from these systems because it uses a flat, nonbuffered intercon-
nect based on detailed floor-planning, SPICE simulation, and
measured silicon results.

IX. CONCLUSION

As the number of on-chip cores increases, the demand
for interconnection networks to simultaneously support high
bisection bandwidth, predictable memory access latencies, and
quality of service guarantees grows. NoC systems can provide
high bandwidth but typically are unable to support applications
requiring uniform memory access or quality of service due
to high hop counts associated with these networks. Busses
and crossbars can enable more consistent memory latencies
but have traditionally been eschewed due to power and area
concerns.

In this paper, we leverage a recently proposed crossbar
building block, the Swizzle-Switch, to build high-radix inter-
connects, including a Flattened Butterfly and the Swizzle-Switch
Network. These high-radix networks decrease the average and
maximum hop counts in 64-core systems.

Using Swizzle-Switches, we have demonstrated that both
FBFly and SSN topologies outperform Mesh networks. On
average, the FBFly is 15% faster, has a 1.76x smaller L1
on-chip average miss latency, a 2.5x reduction in miss latency
standard deviation, and a 10% energy savings over the Mesh.
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The SSN improves system performance by 21%, with a 2.2x
smaller L1 on-chip average miss latency, and a 3.0x reduction
in miss latency standard deviation all while providing a 25%
energy savings compared to the Mesh. These improvements
show that the FBFly and SSN facilitate easier programmability
and quality of service guarantees on many-core systems.

Finally, this paper demonstrates a 3-D integrated version of
the SSN which increased the interconnect speed by 1.8x and
improved overall runtime by up to 30% for latency sensitive
benchmarks. Detailed thermal analysis also confirmed the en-
ergy-efficient design of the 3-D-SSN was able to operate within
the range of passive cooling solutions.

REFERENCES

[1] A. Alameldeen and D. Wood, “Variability in architectural simulations
of multi-threaded workloads,” in Proc. 9th Int. Symp. High-Perfor-
mance Comput. Archit., 2003, pp. 7-18.

[2] J. Andrews and N. Baker, “Xbox 360 system arch,” I[EEE Micro, vol.
26, no. 2, pp. 25-37, Mar./Apr. 2006.

[3] ARM Ltd, Cortex-A5 Processor, ARM Databrief 2010.

[4] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. 20th Annu. Int. Conf. Supercomput.,, 2006, pp.
187-198.

[5] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of splash-2 and parsec,” in IEEE Int. Symp. Workload
Characterizat., 2009, pp. 86-97.

[6] N. Binkert and B. Beckmann et al., “The gem5 simulator,” in Comput.
Architecture News, Jun. 2011.

[7] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” in ACM Comput. Surv., 2006.

[8] L. Bononi and N. Concer, “Simulation and analysis of network-on-
chip architectures: Ring, spidergon and 2-D mesh,” in Proc. Design,
Automat. Test Eur., 2006, vol. 2, p. 6.

[9] L. Bononi and N. Concer et al., “Noc topologies exploration based
on mapping and simulation models,” in Proc. 10th Euromicro Conf.
Digital Syst. Design Archit., Methods Tools, 2007, pp. 543-543.

[10] S. Borkar, “Networks for multi-core chips: A contrarian view,” in Int.
Symp. Low Power Electron. Design, 2007.

[11] L. Cheng and N. Muralimanohar e? al., “Interconnect-aware coherence
protocols for chip multiprocessors,” in Proc. 33rd Int. Symp. Comput.
Archit., 2006, pp. 339-351.

[12] D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach, 1st ed. San Francisco, CA: Morgan
Kaufmann, 1998.

[13] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA: Morgan Kaufmann, 2003.

[14] R. Das and S. Eachempati et al., “Design and evaluation of a hierar-
chical on-chip interconnect for next-generation cmps,” in Proc. [EEE
15th Int. Symp. High Performance Comput. Architect., Feb. 2009, pp.
175-186.

[15] D. Fick and R. Dreslinski et al., “Centip3de: A 3930 dmips/w config-
urable near-threshold 3-D-stacked system w/64 arm cortex-m3 cores,”
in IEEE Int. Solid- State Circuits Conf. Dige. Tech. Papers, Feb. 2012,
pp. 190-192.

[16] M. Galles, “Spider: A high-speed network interconnect,” IEEE Micro,
vol. 17, no. 1, pp. 34-39, Jan. 1997.

[17] B. Grot and J. Hestness et al., “Express cube topologies for on-chip
interconnects,” in Proc. IEEE 15th Int. Symp. High Performance
Comput. Archit., 2009, pp. 163—-174.

[18] B. Grot, S. W. Keckler, and O. Mutlu, “Preemptive virtual clock: A
flexible, efficient, and cost-effective QOS scheme for networks-on-
chip,” in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchit., New
York, 2009, pp. 268-279.

[19] M. Gschwind and H. Hofstee ef al., “Synergistic processing in cell’s
multicore architecture,” IEEE Micro, vol. 26, no. 2, pp. 10-24, Mar./
Apr. 2006.

[20] S. Gupta and M. Hibert et al., “Techniques for producing 3-D ics with
high-density interconnect,” in 2/st Int. VLSI Multilevel Interconnect.
Conf., 2004.

[21] R. Haring, “The IBM blue gene/q compute chip+simd floating-point
unit,” in HotChips 23: Symp. High-Performance Chips, 2011.

[22] J. Howard and S. Dighe et al., “A 48-core ia-32 message-passing pro-
cessor with DVFs in 45 nm CMOS,” IEEE J. Solid-State Circuits, vol.
46, no. 1, pp. 173—183, Jan. 2011.

[23] J. Hu and R. Marculescu, “Energy-and performance-aware mapping
for regular NOC architectures,” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 24, no. 4, pp. 551-562, Apr. 2005.

[24] Intel Corp, Intel atom processor for nettop platforms, Intel product brief
Nov. 2008.

[25] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual circuit tree multicas-
ting: A case for on-chip hardware multicast support,” in Proc. 35th Int.
Symp. Computer Archit., 2008, pp. 229-240.

[26] T. Johnson and U. Nawathe, “An 8-core, 64-thread, 64-bit power ef-
ficient SPARC SOC (niagara2),” in /[EEE Int. Dig. Tech. Papers, Feb.
2007, pp. 108-590.

[27] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches,” in Proc.
10th Int. Conf. Architectural Support Programm. Languages Operat.
Syst.,, 2002, pp. 211-222.

[28] D. H. Kim and K. Athikulwongse et al., “3-D-maps: 3-D massively
parallel processor with stacked memory,” in /EEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 188—190.

[29] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for
on-chip networks,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Microar-
chitecture, Dec. 2007, pp. 172-182.

[30] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture
of a high-radix router,” in Proc. 32nd Int. Symp. Comput. Archit., Jun.
2005, pp. 420-431.

[31] G. Kornaros, “Bceb: A buffered crossbar switch fabric utilizing shared
memory,” in Proc. 9th EUROMICRO Conf. Dig. Syst. Design: Archit.,
Methods Tools, 2006, pp. 180-188.

[32] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in
multi-core architectures: Understanding mechanisms, overheads and
scaling,” in Proc. 32nd Int. Symp. Comput. Archit., Jun. 2005, pp.
408-419.

[33] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-synchronized frames
for guaranteed quality-of-service in on-chip networks,” in Proc. 35th
Int. Symp. Comput. Archit., Jun. 2008, pp. 89—100.

[34] L. Liet al., “Ccc: Crossbar connected caches for reducing energy con-
sumption of on-chip multiprocessors,” in Proc. Euromicro Symp. Dig-
ital Syst. Design, Sep. 2003, pp. 41-48.

[35] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server con-
solidation,” in Proc. 34th Annu. Int. Symp. Comput. Archit., 2007, pp.
46-56.

[36] N. McKeown, “The ISLIP scheduling algorithm for input-queued
switches,” I[EEE/ACM Trans. Network., vol. 7, no. 2, pp. 188-201,
Apr. 1999.

[37] G. Passas, M. Katevenis, and D. Pnevmatikatos, “A 128 x 128 x
24 gb/s crossbar interconnecting 128 tiles in a single hop and oc-
cupying 6% of their area,” in Proc. 4th ACM/IEEE Int. Symp. Net-
works-on-Chip, May 2010, pp. 87-95.

[38] G. Passas, M. Katevenis, and D. Pnevmatikatos, “VLSI micro-archi-
tectures for high-radix crossbar schedulers,” in Proc. 5th IEEE/ACM
Int. Symp. Networks Chip, May 2011, pp. 217-224.

[39] L.-S. Peh and W. J. Dally, “A delay model and speculative architec-
ture for pipelined routers,” in Proc. 7th Int. Symp. High-Performance
Comput. Archit., 2001, pp. 255-266.

[40] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An analysis of
on-chip interconnection networks for large-scale chip multiproces-
sors,” in ACM Trans. Archit. Code Optim., May 2010, pp. 4:1-4:28.

[41] S. Satpathy and R. Dreslinski et al., “Swift: A 2.1 tb/s 32 x 32 self-
arbitrating manycore interconnect fabric,” in Proc. 2011 Symp. VLSI
Circuits, Jun. 2011, pp. 138-139.

[42] S. Satpathy and Z. Foo et al., “A 1.07 tbit/s 128 x 128 swizzle network
for SIMD processors,” in JEEE Symp. VLSI Circuits, Jun. 2010, pp.
81-82.

[43] S. Satpathy and K. Sewell et al., “A 4.5 tb/s 3.4 tb/s/w 64 x 64 switch
fabric with self-updating least recently granted priority and quality of
service arbitration in 45 nm CMOS,” in IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers., Feb. 2012, pp. 478—480.

[44] S.Scott, D. Abts, J. Kim, and W. J. Dally, “The blackwidow high-radix
CLOS network,” in Proc. 33rd Int. Symp. Comput. Archit., 2006, pp.
16-28.

[45] L. Seiler and D. E. A. Carmean, “Larrabee: A many-core X 86 archi-
tecture for visual computing,” in ACM Trans. Graphics, 2008.

[46] K. Skadron and M. Stan et al., “Temperature-aware microarchitecture,”
in Proc. 30th Annu. Int. Symp. Comput. Archit., Jun. 2003, pp. 2—13.



SEWELL et al.: SWIZZLE-SWITCH NETWORKS FOR MANY-CORE SYSTEMS

[47]

[48]

[49]

[50]

[51]

[52]

J. C. Villanueva et al., “A performance evaluation of 2-D-mesh, ring,
and crossbar interconnects for chip multi-processors,” in Proc. 2nd Int.
Workshop Network Chip Archit., Dec. 2009, pp. 51-56.

H.-S. Wang, L.-S. Peh, and S. Malik, “A power model for routers: Mod-
eling alpha 21364 and infiniband routers,” IEEE Micro, vol. 23, no. 1,
pp. 2635, Jan./Feb. 2003.

D. Wentzlaff and P. Griffin et al., “On-chip interconnection architecture
of the tile processor,” IEEE Micro, vol. 27, no. 5, pp. 15-31, Sep.—Oct.
2007.

S. C. Woo and M. Ohara et al., “The SPLASH-2 programs: Character-
ization and methodological considerations,” in Proc. 22nd Annu. Int.
Symp. Comput. Archit., Jun. 1995, pp. 24-36.

Y. Zhang and M. J. Irwin, “Power and performance comparison of
crossbars and buses as on-chip interconnect structures,” in Conf. Rec.
33rd Asilomar Conf. In Signals, Syst., Comput., Oct. 1999, vol. 1, pp.
378-383.

Y. P. Zhang et al., “A study of the on-chip interconnection network for
the IBM cyclops64 multi-core architecture,” in Proc. 20th Int. Parallel
Distrib. Process. Symp., Apr. 2006, p. 10.

Korey Sewell received the B.S. degree in computer
science from the University of California, Riverside,
in 2004, and the M.S.E. degree, in 2007, in com-
puter science and engineering from the University
of Michigan, Ann Arbor, where he is currently a
doctoral candidate.

He has research interests in high-performance mi-
croprocessor design, many-core systems, on-chip in-
terconnects, and simulation modeling.

Ronald G. Dreslinski received the B.S.E. degree in
electrical engineering, the B.S.E. degree in computer
engineering, and the M.S.E. and Ph.D. degrees in
computer science and engineering from the Univer-
sity of Michigan, Ann Arbor.

He is currently a Research Scientist at the Univer-
sity of Michigan. His research focuses on architec-
tures that enable emerging low-power circuit tech-
niques.

Thomas Manville received the B.S. degree in com-
puter engineering, in 2011, from the University of
Michigan, Ann Arbor, where he is currently working
toward the M.S. degree under Prof. T. Mudge.

His current research interests include memory con-
trollers, branch prediction and scalable, on chip inter-
connects.

Sudhir Satpathy received the B.S. degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, India, in 2007, and the Ph.D.
degree in electrical engineering from the University
of Michigan, Ann Arbor, in 2011.

Currently, he serves as a Research Scientist at
Intel’s Circuits Research Lab, Hillsboro, OR. His
primary research interests are on-die interconnect
fabrics, arithmetic and DSP circuit design. He has
published 10 conference papers, won two student
design contest awards, and holds one issued and five

R

pending U.S. patents.

293

Nathaniel Pinckney received the B.S. degree from
Harvey Mudd College, Claremont, CA, in 2008. He
is a graduate student at the University of Michigan,
Ann Arbor.

He worked two years at Sun Microsystems’ Sun
Labs. His interests include low-power near-threshold
circuits.

Geoff Blake received the B.S.E., M.S.E., and Ph.D.
degrees in computer science and engineering from
the University of Michigan, Ann Arbor, in 2004,
2006, and 2011, respectively.

His research interests include multi-core architec-
ture, operating systems, transactional memory, and
more recently enterprise applications for low power
servers. He is currently working in research and de-
velopment at ARM Inc.

Dr. Blake is a member of the ACM.

Michael Cieslak received the B.S. degree in com-
puter engineering from the University of Michigan,
Ann Arbor, in 2011.

He has conducted research in the field of scalable
interconnect design under Prof. T. Mudge. He cur-
rently works at Amazon, where his focus is on im-
proving the third party seller’s experience.

Reetuparna Das received the Ph.D. degree in com-
puter science and engineering from the Pennsylvania
State University, University Park.

She is a research faculty in the Computer Science
and Engineering Department at the University of
Michigan, Ann Arbor, and a member of the Ad-
vanced Computer Architecture Lab (ACAL). Prior
to this, she was a Research Scientist at Intel Labs,
Santa Clara, CA. Her research interests include com-
puter architecture and its interaction with software
systems and device/VLSI technologies.

Dr. Das received an IEEE Top Picks award, outstanding research and teaching
assistantship awards from the Computer Science and Engineering Department
at Pennsylvania State University.

Thomas F. Wenisch (M’07) received the Ph.D.
degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA.

He is the Morris Wellman Faculty Development
Assistant Professor of Electrical Engineering and
Computer Science at the University of Michigan,
Ann Arbor. His research interests include computer
architecture, server and data center energy effi-
ciency, smartphone architecture, and multiprocessor
systems.

Dr. Wenisch is a member of ACM.



294 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 2, NO. 2, JUNE 2012

Dennis Sylvester (S°95-M’00-SM’04-F’11) re-
ceived the Ph.D. degree in electrical engineering
from the University of California, Berkeley, where
his dissertation was recognized with the David J.
Sakrison Memorial Prize as the most outstanding
research in the UC-Berkeley Electrical Engineering
and Computer Science Department.

He is a Professor of Electrical Engineering and
Computer Science at the University of Michigan,
Ann Arbor, and Director of the Michigan Integrated
Circuits Laboratory (MICL), a group of ten fac-
ulty and 60+ graduate students. He previously held research staff positions
in the Advanced Technology Group of Synopsys, Mountain View, CA,
Hewlett-Packard Laboratories, Palo Alto, CA, and a visiting professorship
in Electrical and Computer Engineering at the National University of Sin-
gapore. He has published over 300 articles along with one book and several
book chapters. His research interests include the design of millimeter-scale
computing systems and energy efficient near-threshold computing for a range
of applications. He holds 10 U.S. patents. He also serves as a consultant
and technical advisory board member for electronic design automation and
semiconductor firms in these areas. He co-founded Ambiq Micro, a fabless
semiconductor company developing ultra-low power mixed-signal solutions
for compact wireless devices.

David Blaauw (F’12) received the B.S. degree in
physics and computer science from Duke University,
Durham, NC, in 1986, and the Ph.D. degree in
computer science from the University of Illinois,
Urbana, in 1991.

Until August 2001, he worked for Motorola, Inc.,
Austin, TX, were he was the manager of the High Per-
formance Design Technology Group. Since August
2001, he has been on the faculty at the University of
Michigan where he is a Professor. He has published
over 350 papers and hold 40 patents. His work has

focused on VLSI design with particular emphasis on ultra low power and high
performance design.

Dr. Duke was the Technical Program Chair and General Chair for the In-
ternational Symposium on Low Power Electronic and Design. He was also the
Technical Program Co-Chair of the ACM/IEEE Design Automation Conference
and a member of the ISSCC Technical Program Committee.

Trevor Mudge (S°74-M’77-SM’84—F’95) received
the B.Sc. degree from the University of Reading,
Reading, U.K., in 1969, and the M.S. and Ph.D.
degrees in computer science from the University of
Illinois, Urbana, in 1973 and 1977, respectively.
Since 1977, he has been on the faculty of the
University of Michigan, Ann Arbor. He was named
the first Bredt Family Professor of Electrical Engi-
neering and Computer Science after concluding a 10
year term as the Director of the Advanced Computer
Architecture Laboratory—a group of eight faculty
and about 60 graduate students. He is author of numerous papers on computer
architecture, programming languages, VLSI design, and computer vision. He
has also chaired about 50 theses in these areas. His research interests include
computer architecture, computer-aided design, and compilers. In addition to his
position as a faculty member, he runs Idiot Savants, a chip design consultancy.
Dr. Mudge is member of the ACM, the IET, and the British Computer Society.



