A Fine-Grained GALS SoC with Pausible Adaptive Clocking in 16 nm FinFET


Modern SoCs suffer from power supply noise that can require significant additional timing margin, reducing performance and energy efficiency. Globally asynchronous, locally synchronous (GALS) systems can mitigate the impact of power supply noise, as well as simplify system design by removing the need for global timing closure. This work presents a 4mm^2 distributed accelerator engine with 19 independent clock domains implemented in a 16nm process. Local adaptive clock generators dynamically tolerate and mitigate power supply noise, resulting in a 10% improvement in performance at the same voltage compared to a globally-clocked baseline. Pausible bisynchronous FIFOs enable low-latency global communication across an onchip network via error-free clock domain crossings. The SoC functions robustly across a wide range of voltages, frequencies, and workloads, demonstrating the practical applicability of fine grained GALS techniques for modern SoC design.

2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)